
r-audio: Declarative, reactive and flexible Web Audio
graphs in React

Jakub Fiala
BBC Research & Development
Centre House, 56 Wood Lane

London W12 7SB
jakub.fiala@bbc.co.uk

ABSTRACT
Web Audio is by design an object-oriented, imperative API
offering low-level control over audio graphs. There have been
a number of efforts to provide a more intuitive wrapper API.
Designing such wrapper libraries poses challenges in address-
ing graph configuration, dynamic mutation and data flow.
Syntax of creating directed graphs in imperative code is not
representative of the complex graph shapes, making the code
difficult to understand without external visualisation tools.

In this paper I describe r-audio1, a Web Audio wrapper li-
brary which attempts to solve the issues of imperative graph
representations by leveraging the component system of Re-
act. I compare approaches of existing wrapper libraries and
discuss solutions to specific issues of declarative and reactive
representations of Web Audio graphs. I evaluate r-audio in
terms of the ability to create arbitrary directed graphs and
mutate them in real time.

CCS Concepts
•Software and its engineering → Data flow architec-
tures; Abstraction, modeling and modularity; Object
oriented architectures;

Keywords
JavaScript, Web Audio, React, directed graphs, declarative
programming

1. INTRODUCTION
According to the Web Audio API specification, the pri-

mary paradigm of the API is“the audio routing graph, where
a number of AudioNode objects are connected together to
define the overall audio rendering”[2]. The audio signal is
routed from one or more source nodes to one or more des-
tination nodes. The graph is directed and can be cyclic.
As potential use cases the specification suggests “reasonably
complex games and interactive applications, including mu-
sical ones”. Such use cases may require considerably large

1https://github.com/bbc/r-audio

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2018, September 19–21, 2018, Berlin, Germany.

c© 2018 Copyright held by the owner/author(s).

graphs. The graph complexity is further increased with
support for multi-channel processing and spatialised audio.
Most Web Audio nodes contain AudioParams which repre-
sent the state of the graph. The state needs to be managed
individually for every node, which can lead to a need for
higher-level abstractions.

1.1 Creating directed graphs in Web Audio
The Web Audio API is designed as an object-oriented,

imperative API. AudioNodes are stateful class instances and
connections are created by calling the connect method of
the source node, passing the destination node as the first
argument. The code for creating a linear processing pipeline
is reasonably representative of the graph shape, but more
complex routings are not so apparent.

source = audioCtx . createMediaStreamSource (
stream);

source . connect (analyser);
analyser . connect (distortion);
distortion . connect (delay);
delay. connect (gainNode);
gainNode . connect (distortion);
delay. connect (audioCtx . destination);

Listing 1: This Web Audio graph may seem linear
at a first glance, but it contains a loop.

In Listing 1, each AudioNode has its own variable binding
and retains its state in its AudioParams. Every connection
must be explicitly declared. All state transitions and graph
mutations must be performed manually which may lead to
verbose and counter-intuitive coding patterns. Errors are
more likely to occur in large graphs where minor mutations
may have large consequences.

2. RELATED WORK
Many client-side JavaScript frameworks use a declarative-

style API as an abstraction for document.createElement to
simplify creation of deep DOM trees. A-Frame[1] creates
WebVR scenes from custom elements embedded directly in
the HTML document. React[11] uses JSX syntax similar
to HTML and XML where elements are declared and con-
figured using props[12]. Declarative APIs make it simpler
to create data bindings between explicit state in JavaScript
and implicit state in the DOM or a WebGL context. React
in particular maintains a virtual DOM data structure and
performs the smallest amount of work required for each state
transition[3].

Volke et al.[14] describe a declarative Web Audio li-
brary based on native HTML Custom Elements embed-
ded directly into the document. Individual custom ele-
ments represent both data (<webaudio-buffer/>) and nodes
(<webaudio-source/>). Connections between nodes are cre-
ated implicitly. Processing branches are created as children
of source nodes, but cycles and branch merging is not ac-
counted for. The library authors do not provide examples
of graph mutation.

The virtual-audio-graph library[8] is inspired by virtual
DOM frameworks. It simplifies state management by de-
coupling explicit and implicit states and provides an update
method to change the implicit state of the audio graph. The
graph is represented by a plain object with keys acting as
node IDs. Connections are made explicitly by specifying
the destination node ID. Nested structures are created using
a provided createNode method. While virtual-audio-graph
can support complex graphs, explicit connections and key-
based node references are little different from the imperative
native API. The shape of the audio graph cannot easily be
inferred from looking at the code which generates it.

react-webaudio[9] is (like our library) based on React, al-
lowing for graph mutation and state management. However,
it only supports a limited subset of Web Audio nodes and
creates implicit connections from parent nodes to children
only, resulting in deeply nested code.

3. LIBRARY DESIGN

3.1 Dependency on React
r-audio is designed as a collection of React components.

React is one of the most popular UI frameworks and its
component system and virtual DOM implementations have
a number of useful properties:

• Components are inherently modular and reusable

• JSX syntax is suitable for compact representations of
hierarchical structures with properties

• Virtual DOM offers separation and management of ex-
plicit and implicit state

• React’s reconciliation mechanism ensures that the
least amount of DOM updates are performed to
achieve the effect specified by explicit application
state. 2

• Unidirectional data bindings make it easy to reason
about data flow

• Component connections can be represented implicitly
by parent-child relationships.

React encourages a “single source of state” model where
application state is stored in a single JavaScript object. The
object is treated as immutable, so every update is a map
between the current state object and a new, different state
object. Such state transitions are easier to reason about
in large applications and can be tracked precisely, which
simplifies debugging[7].

2Suppose a list of JavaScript objects is transformed into
HTML elements. If some of the objects are changed
in application code, React only updates the DOM elements
affected by the change.

3.2 Context and inheritance
r-audio includes three base classes which inherit

from React.Component — RAudioContext represents an
AudioContext instance and a node registry; RComponent
represents a component interacting with RAudioContext;
RAudioNode extends RComponent and adds parameter and
connection management methods for AudioNodes.

All RComponents are given a reference to the parent con-
text using React’s context API. This reference is used to
instantiate nodes on the audio graph. Each node type is
represented by a component which extends RAudioNode.
This component is responsible solely for instantiating an
AudioNode on the parent context and specifying its param-
eters.

3.3 Constructing graphs
React components don’t expose internal variables to their

siblings. In order to create implicit connections between
adjacent JSX nodes, r-audio stores references to all nodes
in a Map bound to the RAudioContext. When a node is
created, its reference is added to the map under a unique
Symbol key. The key can refer to a single node or a list of
Symbols pointing to one node each.

The JSX syntax can denote parent-child and sibling-
sibling relationships between nodes. I designed the following
graph construction components, which can be composed to
represent any arbitrary graph using the two relationships:

• RPipeline connects its child nodes in a series, direct-
ing its input to the first child and connecting the last
child to its output

• RSplit connects its input to its child nodes in parallel,
and connects all children to its output at the end

• RSplitChannels is similar to RSplit, but connects a
different channel of the input signal to every child

• RCycle connects each child’s output to the child’s in-
put and to its destination

I found the only graph configuration not possible purely
by composing graph construction components is that of a
branch without a destination. To allow such a configuration
any node in r-audio can receive the disconnected prop, pre-
venting it from connecting to any other nodes.

Fig. 1 shows how graph construction components modify
their children by providing a destination function, which re-
turns a list of nodes the child is required to connect to. The
child connects to an AudioParam of its destination nodes if
the connectToParam prop is added to it.

3.3.1 Connectable and non-connectable component
types

A number of Web Audio nodes act as signal sources and
cannot be connected to. This becomes an issue with serial
connections, i.e. within a RPipeline. If such a node ap-
pears between two other nodes, an inbound branch must be
created. Consider the graph configuration in Listing 2.

<RPipeline >
<ROscillator start ={0} frequency ={440}

/>
<RBiquadFilter frequency ={5000} />
<ROscillator

start ={0}

Figure 1: RPipeline connects two nodes by assigning
Symbol IDs to them and providing the RGain with a
destination function which returns the RBiquadFilter
node based on its ID

Figure 2: Inbound branch created when a non-
connectable node is placed between connectable
nodes in a pipeline.

frequency ={2}
connectToParam ="gain" />

<RGain gain ={0.5} />
</ RPipeline >

Listing 2: A pipeline with a non-connectable node
in the middle.

The pipeline is resolved from the end, so RGain will be
connected to the nearest preceding connectable node —
RBiquadFilter. The second oscillator will constitute an in-
bound branch and connect to the gain parameter of RGain.
The resulting graph is depicted in Fig. 2.

3.3.2 Dealing with channels
r-audio implements RChannelSplitter and

RChannelMerger nodes along with props which deter-
mine source and destination channel indices for a given
node. Since JSX cannot express a many-to-many relation-
ship as needed for channel splitting3, it is necessary to
create an abstraction around it.

The RSplitChannels component (Fig. 3) is composed of a
pipeline containing a channel splitter, a RSplit component
and a channel merger. Children are rendered within the
RSplit. Since RChannelSplitter is configured to connect
a different channel to each of its destinations, a branch is
created for every input channel. The branches are forced to
connect to a different channel of the channel merger each.

3.4 Mutating graphs and updating state
Graph mutation support is a core requirement of full Web

3i.e. connecting many channels of a node to many destina-
tions

Figure 3: Composition of the RSplitChannels com-
ponent.

Figure 4: r-audio uses React’s state management
model where there is a single state object at all
times. Updates are performed by creating a new
object, so it is always clear where mutations origi-
nate.

Audio compatibility. In a native Web Audio application,
mutations are performed by explicitly disconnecting and re-
connecting nodes. This is in contrast to AudioParam up-
dates, which are the other kind of state updates in Web
Audio.

To remove a connected node the developer needs to main-
tain references to multiple surrounding nodes. React’s life-
cycle methods provide useful hooks to facilitate mutation
of the audio graph without the need to explicitly execute
reconnections.

The first step in performing a mutation is to dis-
connect any node being removed from its destinations.
This can be easily achieved by calling disconnect in the
componentWillUnmount method of the audio node. In r-
audio all sibling relationships are created using RPipeline,
making it the only other component concerned with muta-
tion. The pipeline provides parent references to every child.
The child can then disconnect itself from the parent as part
of the child’s unmount routine. New connections are created
implicitly in the render method of the pipeline and include
nodes surrounding the removed node and any added nodes.

3.4.1 Scheduling
In line with React’s state management model

(Fig. 4), scheduling in r-audio is driven by state
changes. All nodes which in native Web Audio in-
herit from AudioScheduledSourceNode are subclasses of
RScheduledSource.

To use these nodes, we can provide a start prop with
optional offset and duration props. To stop playback at a
certain point, we provide a stop prop. The node is respon-
sible for reconciling and scheduling the start and stop times.
If the start time occurs after the stop time, playback does
not start.

After a scheduled node’s playback has ended, Web Audio
removes it from the graph. r-audio responds to the onended
event on the node by creating a new instance as soon as
playback ends. This ensures the virtual graph is always in

sync with the audio graph.

3.4.2 Updating AudioParams
Similarly to playback scheduling, changes to parameters

in the graph are entirely driven by state updates. By default,
when a component’s prop changes the AudioParam value is
changed immediately. The scheduling can be changed us-
ing the transitionTime and transitionCurve props. The
transition time is the scheduled target time for the ramp,
and specific transition times and curves can be assigned
to props by passing a dictionary to transitionTime and
transitionCurve.

3.5 Data objects and non-audio interaction

3.5.1 Separation of concerns
By design, r-audio does not provide abstractions for data

types specified in the Web Audio API specification. This in-
cludes the AudioBuffer, AudioListener and PeriodicWave
classes, and media element or stream objects. Separating the
audio graph from any data which does not alter it makes it
easy to centralise state and correctly model situations where
data may not be readily available at the point of instantia-
tion of the graph.

In certain situations data objects are integral to the
function of a node. In these cases React lifecycle meth-
ods are again a useful paradigm. RBufferSource, for in-
stance, expects a buffer object to be provided as a prop.
If it is not provided, the node is idle and waits for the
componentDidUpdate method to be called. Once the method
is called and a buffer provided, playback starts automat-
ically. The state of the node is completely driven by its
props, so there is no need to call methods explicitly.

3.5.2 Audio analysis
In native Web Audio Analyser and BiquadFilter nodes

generate analysis data. This data may not necessarily be
used in sync with (or at the frequency of) the audio stream.
Application developers can call the node’s methods and pro-
vide a typed array to be filled with frequency- or time-
domain data, or a filter’s frequency response. This action
cannot therefore be entirely state-driven.

r-audio exploits React’s ability to render functions as chil-
dren of components to expose a proxy object to the internal
Analyser or BiquadFilter node. The proxy only contains the
data extraction methods and its properties are frozen using
Object.freeze.

Listing 3 shows simple usage of RAnalyser. In prac-
tice, the proxy object can be stored in the compo-
nent’s state and accessed as needed, e.g. in a call to
requestAnimationFrame.

<RAnalyser fftSize ={2048} >
{

proxy => {
const data = new Float32Array (

proxy. frequencyBinCount
);
proxy. getFloatFrequencyData (data);

}
}
</ RAnalyser >

Listing 3: An example of using the proxy object
provided by RAnalyser.

3.5.3 AudioWorklet
The recently introduced[4] AudioWorkletNode allows cus-

tom audio processing separated from the main thread. It
depends on loading a worklet script and registering it with
the desired audio context. Unlike BufferSourceNode, its r-
audio abstraction cannot be mounted into the audio graph
without obtaining the data (in this case, registering the
worklet script) first. This prevents audio from being pro-
cessed without the worklet effect before the worklet script
is registered. If the node is mounted without a registered
worklet, a TypeError is thrown.

3.6 Combining r-audio and HTML
By default, r-audio components do not render any DOM

elements. This is possible since React v16.0 which removed
the requirement to wrap JSX blocks in a single parent ele-
ment[5]. In debug mode, the audio graph is rendered as a
nested list where every node is represented by a ele-
ment, and its parameters rendered as key-value pairs. The
debug mode can serve as a standalone tool or an accompa-
niment to tools such as the Firefox Web Audio developer
tool[6].

In addition to rendering debug HTML, r-audio compo-
nents can be mixed with arbitrary HTML elements or React
components. There is a number of potential use cases for
HTML embedded in audio graphs:

• visualising the audio graph

• providing media elements acting as audio sources (the
elements can be passed as props using the React refs
system[13])

• creating mixed components which include both UI and
audio subgraphs4

4. EVALUATION

4.1 Graph update latency and integrity
In Web Audio applications, many updates are scheduled

ahead of time and the audio thread ensures precise execution
of changes. To support real-time processing in the context
of live performance or game audio, instant updating of the
audio graph is sometimes necessary. All mutations in r-
audio are facilitated by React’s core algorithms, incurring
performance penalties.

To evaluate the impact of React processing overhead, I
measured the start and stop routines of two scheduled nodes
— OscillatorNode and AudioBufferSourceNode, and their
r-audio counterparts. Time stamps were obtained using the
User Timing API[10]. Table 1 shows a significant difference
between execution latencies.

While React does incur a performance cost, the recon-
ciliation mechanism also optimises graph mutations so the
smallest possible amount of work is done while transition-
ing to a new state. For instance, when a node is replaced
by a node of the same type but with different props, React
detects the difference between the replaced components is
only in the prop value and performs an update accordingly.

4At the time of writing, r-audio cannot use audio compo-
nents embedded within HTML elements. The suggested way
to create mixed components is to use RPipeline as the wrap-
per and including all HTML in a single child component.

Table 1: Average latencies of immediately starting
and stopping scheduled nodes (average of 50 mea-
surements, in milliseconds)

Operation r-audio Native
Oscillator start 56.2 3.28
Oscillator end 46.4 10.2

BufferSource start 53.52 4.12
BufferSource end 50.68 11.24

It is important to note that to fully evaluate the latency
impact of both the r-audio and React layers more thorough
performance testing may be necessary. This would include
testing more node types and kinds of updates. It remains
to be seen if latency issues prove an issue for users of the
library.

4.2 Web Audio coverage
At the time of writing, r-audio supports all AudioNodes

specified in the Web Audio API. Immediate and ramp-based
updates to AudioParams are also covered. Functionality
of other AudioParam methods such as setTargetAtTime,
cancelAndHoldAtTime and setValueCurveAtTime is not
currently covered. Enabling it requires a redesign of the
parameter interaction model and is worth investigating
as a separate issue. OfflineAudioContext is also cur-
rently not included in r-audio. I decided not to implement
ScriptProcessorNode as it is deprecated and its function-
ality can be replicated with AudioWorklet.

4.3 Future work
To fully assess the design of r-audio it is necessary to test

the library within many small and large user-facing applica-
tions. More work is required for better interoperability with
HTML in React so r-audio components can be nested inside
HTML structures. Advanced scheduling of AudioParams
and offline processing could also be enabled. Lastly, I would
like to improve reusability of r-audio components even fur-
ther âĂŞ currently graphs can be reused and shared if ex-
ported as functional components (rather than classes). It
would be preferable to offer an extensible RComponent class
to third-party developers.

5. CONCLUSION
r-audio provides an alternative, but nearly complete in-

terface to Web Audio API primitives. In this paper I have
shown its design enables rapid creation of complex Web Au-
dio graphs in React. The library simplifies state manage-
ment and improves the ergonomics of working with Web
Audio. The graph components remove the need for explicit
connection management and leverage React’s reconciliation
mechanism to optimise graph mutation. While some perfor-
mance issues were found, r-audio is suitable for numerous
audio processing applications and has potential to improve
the experience of developing with the Web Audio API.

6. ACKNOWLEDGEMENTS
The author would like to thank Chris Needham, BBC

R&D, for invaluable assistance with producing and publish-
ing this work.

7. REFERENCES

[1] A-Frame – Make WebVR. https://aframe.io, Apr
2018. [Online; accessed 16. Apr. 2018].

[2] P. Adenot, R. Toy, C. Wilson, and C. Rogers. Web
Audio API.
https://webaudio.github.io/web-audio-api, April 2018.

[3] CACM Staff. React: Facebook’s functional turn on
writing javascript. Communications of the ACM,
59(12):56–62, 2016.

[4] H. Choi. Enter AudioWorklet | Web.
https://developers.google.com/web/updates/2017/12/
audio-worklet, Mar 2018. [Online; accessed 19. Apr.
2018].

[5] A. Clark. React v16.0 - React Blog.
https://reactjs.org/blog/2017/09/26/react-v16.0.html,
Apr 2018. [Online; accessed 19. Apr. 2018].

[6] Web Audio Editor. https://developer.mozilla.org/
en-US/docs/Tools/Web Audio Editor, Apr 2018.
[Online; accessed 19. Apr. 2018].

[7] Flux: Application Architecture for Building User
Interfaces, Dec 2016. [Online; accessed 13. Aug. 2018].

[8] B. Hall. virtual-audio-graph.
https://virtual-audio-graph.netlify.com, Apr 2018.
[Online; accessed 16. Apr. 2018].

[9] G. Haussmann. Izzimach/react-webaudio.
https://github.com/Izzimach/react-webaudio, Apr
2018. [Online; accessed 16. Apr. 2018].

[10] J. Mann, Z. Wang, and A. Quach. User Timing Level
2. https://w3c.github.io/user-timing, Apr 2018.
[Online; accessed 23. Apr. 2018].

[11] React - A JavaScript library for building user
interfaces. https://reactjs.org, Apr 2018. [Online;
accessed 16. Apr. 2018].

[12] Components and Props - React.
https://reactjs.org/docs/components-and-props.
html#rendering-a-component, Apr 2018. [Online;
accessed 23. Apr. 2018].

[13] Refs and the DOM - React.
https://reactjs.org/docs/refs-and-the-dom.html, Apr
2018. [Online; accessed 19. Apr. 2018].

[14] S. Volke, B. Bechtold, and J. Bitzer. HTML Web
Audio Elements: Easy interaction with Web Audio
API through HTML. In Proceedings of the Web Audio
Conference, August 2017.

APPENDIX
A. EXAMPLES OF R-AUDIO GRAPHS

A.1 Stereo delay line with feedback

If the input signal is stereo, RSplitChannels can be used
instead, and RStereoPanner is not necessary.
<RAudioContext >

<RSplit >
<RCycle >

<RPipeline >
<RDelay delayTime ={.1} />
<RGain gain ={.4} />
<RStereoPanner pan={−1}/>

</RPipeline >
</RCycle >
<RCycle >

<RPipeline >

<RDelay delayTime ={.3} />
<RGain gain ={.4} />
<RStereoPanner pan ={1}/ >

</RPipeline >
</RCycle >

</RSplit >
</ RAudioContext >

A.2 Stereo delay line with feedback

In this example, this.audio is a reference to a HTML5
Audio element.
<RAudioContext >

<RPipeline >
<RMediaElementSource element ={ this.

audio} />
<RCycle >

<RPipeline >
<RDelay delayTime ={.3} />
<RGain gain ={.8} />

</RPipeline >
</RCycle >
<RGain gain ={2} />

</RPipeline >
</ RAudioContext >

A.3 AudioParams with transitions

This example also shows a number of advanced rout-
ings — e.g. a non-connectable oscillator between a
panner and filter in a pipeline; a pipeline leading to
a disconnected filter node; an oscillator controling an
AudioParam.
<RAudioContext >

<RSplit >
<ROscillator start ={0}

frequency ={330}
type =" triangle "
detune ={ detune + 3}
transitionTime ={.5} />

<RBiquadFilter frequency ={1000}
gain ={ gain}
Q={1}
type =" lowpass "
detune ={ detune }
transitionTime ={{ gain: 5, detune :

10 }}
transitionCurve ={{

gain: ’exponential ’,
detune : ’linear ’}} />

<RPipeline >
<RBiquadFilter frequency ={1000}

gain ={1}
Q={1}
type =" lowpass "
detune ={5}
transitionTime ={.8}/ >

<ROscillator start ={0}
frequency ={1}
type =" sine"
detune ={0}
connectToParam =’pan ’ />

<RStereoPanner />
</RPipeline >
<RPipeline >

<RBiquadFilter
frequency ={1000}
gain ={1}

Q={1}
type =" lowpass "
detune ={3}
transitionTime ={.8}
disconnected />

</RPipeline >
</RSplit >

</ RAudioContext >

A.4 FFT extraction and worklet processing of
a MediaStream

<RAudioContext >
<RPipeline >

<RMediaStreamSource
stream ={ this.state. stream } />

<RAnalyser fftSize ={2048} >
{

proxy => {
const data = new Float32Array (

proxy. frequencyBinCount
);

// when this function first runs
// there will be no data yet
// in reality one might want to save
// the ‘proxy ‘ object and call it

independently
// e.g. inside a ‘requestAnimationFrame ‘

call
setTimeout (() => {

proxy. getFloatFrequencyData (
data);

console .log(data);
}, 3000);

}
}
</RAnalyser >
<RDelay delayTime ={.3} bitDepth ={4}

/>
<RSplitChannels channelCount ={2} >

<RAudioWorklet worklet ="bit−
crusher "
bitDepth ={4}
frequencyReduction ={.5}/ >

<RPipeline >
<RDelay delayTime ={.5} />
<RAudioWorklet worklet ="bit−

crusher "
bitDepth ={4}
frequencyReduction ={.5}/ >

</RPipeline >
</ RSplitChannels >
<RGain gain ={0.4} />

</RPipeline >
</ RAudioContext >

