pywebaudioplayer: Bridging the gap between audio
processing code in Python and attractive visualisations
based on web technology

Johan Pauwels

Centre for Digital Music
Queen Mary University of London

j-pauwels@qgmul.ac.uk

ABSTRACT

Lately, a number of audio players based on web technol-
ogy have made it possible for researchers to present their
audio-related work in an attractive manner. Tools such as
wavesurfer.js, waveform-playlist and trackswitch.js provide
highly-configurable players, allowing a more interactive ex-
ploration of scientific results that goes beyond simple linear
playback.

However, the audio output to be presented is in many
cases not generated by the same web technologies. The pro-
cess of preparing audio data for display therefore requires
manual intervention, in order to bridge the resulting gap
between programming languages. While this is acceptable
for one-time events, such as the preparation of final results,
it prevents the usage of such players during the iterative de-
velopment cycle. Having access to rich audio players already
during development would allow researchers to get more in-
stantaneous feedback. The current workflow consists of re-
peatedly importing audio into a digital audio workstation in
order to achieve similar capabilities, a repetitive and time-
consuming process.

In order to address these needs, we present pywebaudio-
player, a Python package that automates the generation of
code snippets for the each of the three aforementioned web
audio players. It is aimed at use-cases where audio develop-
ment in Python is combined with web visualisation. Notable
examples are Jupyter Notebook and WSGI-compatible web
frameworks such as Flask or Django.

Keywords

audio player, Python, multi-track audio

1. INTRODUCTION

Python is quickly becoming one of the most popular lan-
guages for general programming. According to the TIOBE!
Programming Community Index for April 2018 (figure 1),

https://www.tiobe.com /tiobe-index/

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2018, September 19-21, 2018, Berlin, Germany.

(© 2018 Copyright held by the owner/author(s).

Mark B. Sandler

Centre for Digital Music
Queen Mary University of London

mark.sandler@gmul.ac.uk

TIOBE Programming Community Index
Source: www.tiobe.com

Figure 1: TIOBE Index of programming language
popularity (April 2018).

which attempts to measure programming language popular-
ity, Python is now the fourth most popular language and ac-
counts for 5.803% of all usage with a year-over-year increase
of 2.35%. In contrast, JavaScript is in eighth position, with
a market share of 3.492% and an increase of 0.64%. Al-
though specific numbers are unavailable, for scientific com-
puting and especially audio processing, the popularity of
Python seems even higher [10].

One of the reasons for Python’s widespread adoption is the
large ecosystem of scientific libraries that surround Python,
such as NumPy [11] and SciPy [6]. For audio processing,
libraries such as essentia [3], madmom [2] or librosa [9] pro-
vide reusable components to speed up algorithm develop-
ment. Even in cases when Python is not used for core
computation, because its interpreted nature leads to pro-
hibitively slow execution times for instance, it is useful to
tie different components together [12] or to plot figures, for
example with matplotlib [5] or seaborn [16].

Another reason for the popularity of Python in scientific
research is that it is an interpreted language with an ex-
pressive syntax and allows interactive development with the
IPython [14] shell. In this context, Jupyter Notebook (8] is
a popular development platform because it allows to mix
code with text and multimedia elements in a reproducible
way. Since Jupyter Notebook is browser-based, web tech-
nologies can be used to display multimedia elements. When
developing audio processing code, it can be really useful to
be able to play back audio within a Jupyter Notebook itself.
The default audio player is very minimal though. Providing
an richer alternative for this default audio player is the main

In [3]: 1 IPython.display.Audio(path)

Out[3]:
| I} 0:00) ———

In [4]: 1 import pywebaudioplayer as pwa
2 IPython.display.HTML (pwa.wavesurfer(path))

Oout[4]:
4 Backward » Play / Il Pause m == Toggle Mute
Figure 2: Comparison between standard audio

player and wavesurfer with default options in
Jupyter Notebook.

motivation for this work.

The envisioned usage goes beyond Jupyter Notebook
though, but includes all contexts where Python code
is used to develop web applications. A good example
are WSGI-compatible frameworks such as Flask [15] or
Django [4]. To this end, no Jupyter specific functionality
is included, but pure HTML and JavaScript is generated
as strings by pywebaudioplayer. Rendering these strings is
then left to the mechanism provided by each specific con-
text. For example, this would mean passing the string to
IPython.display.HTML when Jupyter Notebook is used or
to an HTML template in the case of Flask and Django.

Three popular JavaScript/HTML5 audio players are
wrapped by pywebaudioplayer, namely wavesurfer.js [7],
waveform-playlist [1] and trackswitch.js [17]. They have
been selected because of the distinct use-cases they excel at.
Each of them is presented together with a scenario for which
it is most useful in sections §2, §3 and §4 respectively. We
end this paper with some conclusions and a look at future
work in section §5.

Technically speaking, the wrapper is rather straightfor-
ward. Three Python functions corresponding to each of the
three audio players have been defined in a single package,
which return HTML code snippets as strings. These snip-
pets are constructed in Python based on the given argu-
ments. The underlying Javascript code is kept unmodified
in all cases. For now, these libraries are loaded from the
web, but work is under way to allow them to be loaded from
local copies bundled into the installed Python package as
well, such that offline usage is possible.

We aimed to define a programming interface that tries to
maximise consistency between the three players by making
the function signatures similar. Comparable functionality
has been assigned the same parameter names, in order to
facilitate changing between players, while each player’s de-
fault parameter values have been kept.

2. WAVESURFER: SINGLE AUDIO FILE

In the simplest research scenario, one is working on trans-
forming or generating a single audio file and simple playback
for aural verification is all that is required. Nonetheless,
in this case a waveform display helps to get a quick visual
overview of the audio and advanced controls such as forward

(W e e g e R

Figure 3: Output of listing 1 rendered by the Flask
web framework.

and backward buttons help to navigate around the track. As
evident from the comparison in figure 2, wavesurfer is able
to provide these features that the basic HTML5 audio player
in Jupyter Notebook is lacking.

Listing 1 demonstrates how pywebaudioplayer works.
Configuration options for the different players are organised
into three categories: controls, display and behaviour. Each
of these three is determined by setting values in a Python
dictionary, where absence of a particular option name means
that the default value is being used. Not passing a dictio-
nary at all means that all values of that category will be set
to their defaults. Together with the path to an audio file,
the dictionaries determine the player configuration.

Listing 1: Wavesurfer example
import pywebaudioplayer as pwa
controlsl = {
’text_controls’: False,
’backward_button’: False,
forward_button’: False,
‘mute_button’: False}

displayl = {
’unplayed_wave_colour’: ’darkorange’,
’played_wave_colour’: ’purple’,
’height’: 128}

behaviourl = {’mono’: Falsel}

wl = pwa.wavesurfer (path, controlsl,
displayl, behaviourl)

controls2 = {
’text_controls’: True,
’backward_button’: True,
>forward_button’: True,
‘mute_button’: True}

display2 = {
’unplayed_wave_colour’: ’#999°,
’played_wave_colour’:

’hsla (200, 100%, 30%, 0.5)7,
’cursor_colour’: ’#fff’,
’bar_width’: 3,

’height’: 256}
w2 = pwa.wavesurfer (path, controls2, display2)

Table 1: Keys in the controls dictionary with their default values.

controls wavesurfer waveform_playlist ~ description

text_controls v [True] v/ [False] add text labels to buttons

backward_button v [True] v [True] show backward search button

forward_button v’ [True] v’ [True] show forward search button

stop_button X v’ [True] show stop button

pause_button X v’ [True] show pause button

mute_button v’ [True] show mute button

track_controls X v [True] show per track control section with gain, mute and solo
track_controls_width X v’ [200] width in pixels of the per track control section

Table 2: Keys in the display dictionary with their default values.

description

height in pixels of individual waveform canvas
colour of waveform canvas

waveform colour before being play

waveform colour after being played

cursor colour

display wavesurfer waveform_playlist
height v’ [128] v’ [100]
background_colour v/ ['white’]
unplayed_wave_colour v/ [#9997] X
played_wave_colour v [#555’] X
cursor_colour v #333] X
0:10 0:12 0:14 0:16 0:18 0:20 0:22
PO P T PPN T DI DIPOU PO T DI PITeT AT T T
| Owms |
Mute | Solo - » b.,»»»-
< ©
s
. o
| Bass
Mute Solo .-
©)
| voin
< ©

Master Volume - Automatic Scroll

Figure 4: Output of listing 2 rendered by the Flask
web framework.

Wavesurfer.js does not contain an integrated control
section, but leaves it open to the user in order to pro-
vide maximum flexibility. To make our Python wrapper
self-contained, we added basic control buttons using boot-
strap [13] based on example code on the wavesurfer.js web-
site. Their appearance can be controlled by the keys in the
controls dictionary described in table 1. Similarly, the dis-
play and behaviour of the player can be controlled by the
keys in table 2 and table 3, respectively. The output of list-
ing 1 can be seen in figure 3, which demonstrates the extent
of possible player customisations.

3. WAVEFORM_PLAYLIST:
MULTI-TRACK AUDIO WITH DAW
INTERFACE

Some types of research produce multiple audio files at
once, which should be previewed in sync. Examples are

source separation or auralisation of transcriptions that are
best listened to together with the source material. For these
cases, the standard HTML5 player nor wavesurfer suffice.
Waveform_playlist® provides a user interface similar to a dig-
ital audio workstation (DAW) like Logic Pro, ProTools or
Cubase. Multiple tracks are presented as stacked waveform
displays, each of which can be muted or soloed.

We no longer specify a path to an audio file, but an ar-
ray of track dictionaries as first argument, whose keys can
be found in table 4. At minimum, a path key needs to be
present to specify where the audio needs to be loaded from.
For convenience, raw samples can be passed too, which get
written first to the given path. The second, third and fourth
argument are still the controls, display and behaviour dic-
tionaries of tables 1, 2 and 3, such that function calls are
similar to the example in listing 2. The result of this listing
can be seen in figure 4.

Listing 2: Waveform playlist example
import pywebaudioplayer as pwa

tracks = [
{’title’: ’Drums’, ’path’: ’drums.mp3’},
{’title’: ’Synth’, ’path’: ’synth.mp3°’},
{’title’: ’Bass’, ’path’: ’bass.mp3’},
{’title’: ’Violin’, ’path’: ’violins.mp3’}]

wp = pwa.waveform_playlist(tracks,
{’text_controls’: Truel},
{’background_colour’: ’#EOEFF1°’},

{’mono’: True})

2Note that the JavaScript library waveform-playlist contains
a hyphen in its name, following JavaScript naming con-
ventions, whereas we named our wrapper waveform_playlist
with an underscore to follow Python conventions. In this
text, both versions will appear depending on whether the
original library or the wrapper is being referenced, simi-
lar to the difference in usage between wavesurfer.js and
wavesurfer.

Table 3: Keys in the behaviour dictionary with their default values.

behaviour wavesurfer waveform_playlist description

mono v [True] v [False] downmix stereo files to mono
normalise v/ [False] X normalise to have peak amplitude of 1

Table 4: Keys in the track dictionary with their default values.

track waveform_playlist trackswitch description

path v’ (required) v/ [None] path to track audio file

title v/ [None] v/ [None] name of the track

samples Ve [None] v [None] tuple consisting of list/numpy array with raw samples and samplerate
mimetype X v’ [None] mime type of the audio file

colour X v/ [None] individual track colour

solo v/ [False] solo button activated at start

mute v/ [False] X mute button activated at start

gain e X gain

image X v [None] path to track image file

“only used in combination with path

In [3]: 1 import pywebaudioplayer as pwa

2 IPython.display.HTML(pwa.trackswitch(tracks,

3 text='Example trackswitch.js instance.', seekable_image='mix.png', seek margin=(4,4)))
Oout[3]:

00:00:54:491 / 00:02:46:649

Example trackswitch.js instance.

M

« O Drums
4 O Synth
4 QO Bass
4 Q Violin

Figure 5: Example of trackswitch in Jupyter Notebook.

00:00:00:000 / 00:00:01:000

4 O Fundamental
4) O First overtone
<) O Second overtone
4 O Third overtone
4) O Fourth overtone
4 Q Fifth overtone

4) O Sixth overtone

Figure 6: Output of listing 3 in Jupyter Notebook.

4. TRACKSWITCH: MULTI-TRACK AU-
DIO WITH CUSTOM VISUALISATION

The last player that is wrapped by pywebaudioplayer is
trackswitch.js. Like waveform_playlist, it is a multi-track
player, which means that we again pass a list of track dic-
tionaries as the first, obligatory argument to the function.
For this player, raw samples can be embedded directly, with-
out the need to specify a path to write them to disk, but the
latter is still recommended in all but the smallest test cases,
since embedding large files in HTML code can make a page
unresponsive. Because trackswitch has relatively little con-
figuration options compared to the other two players, the
controls, display and behaviour dictionaries are not used in
this case. All configuration is done by optional function ar-
guments, an overview of these can be found in table 5.

The advantage of trackswitch is that it is possible to com-
bine it with custom visualisations. All that is required is to
pass any image file along to the player, leaving the way the
image is created open for the user to decide. A cursor can be
set to scroll over an image in sync with the audio by specify-
ing the active area of the image with the seekable_image

and seek_margin arguments. This functionality allows us

to recreate the example of the trackswitch.js documentation®
in figure 5, where the tracks array from listing 2 is reused.

However, determining the right offsets to line up the
cursor with the appropriate area of the image can be
a hassle. Therefore we added the possibility to pass a
matplotlib.figure.Figure object as seekable_image

argument, such that the seek_margin can be read directly
from the figure. In listing 3, we give an example that demon-
strates figure generation with matplotlib for trackswitch. Its
output can be seen in figure 6.

Listing 3: Trackswitch example with automatic fig-
ure generation

import numpy as np

samplerate = 8000

freq = 440

3https:/ /audiolabs.github.io/trackswitch.js/configuration.
html

duration = 1
t = np.arange(durationxsamplerate)

f0 = np.sin(2*np.pixfreq*t/samplerate)

f1 = np.sin(2xnp.pi*2xfreq*t/samplerate)
f2 = np.sin(2*np.pi*3xfreqx*t/samplerate)
£f3 = np.sin(2*np.pix4xfreq+t/samplerate)
f4 = np.sin(2xnp.pixbxfreq*t/samplerate)
f5 = np.sin(2*np.pix6xfreq+t/samplerate)
f6 = np.sin(2*np.pix7xfreq*t/samplerate)

complex_sine = fO+f1+f2+f3+f4+£f5+f6

import matplotlib.pyplot as plt

fig, ax = plt.subplots(ncols=1, figsize=(10,4))

ax.specgram(complex_sine, Fs=samplerate,
detrend=’none’)

import pywebaudioplayer as pwa
ts = pwa.trackswitch([

{’title’: ’Fundamental’,
’samples’: (f0, samplerate),
’path’: ’f0.wav’},

{’title’: ’First overtone’,
’samples’: (f1, samplerate),
’path’: ’f1l.wav’},

{’title’: ’Second overtone’,
’samples’: (f2, samplerate),
’path’: ’f2.wav’},

{’title’: ’Third overtone’,
’samples’: (f3, samplerate),
’path’: ’f3.wav’},

{’title’: ’Fourth overtone’,
’samples’: (f4, samplerate),
’path’: ’f4.wav’},

{’title’: ’Fifth overtone’,
’>samples’: (f5, samplerate),
’path’: ’f5.wav’},

{’title’: ’Sixth overtone’,
’samples’: (f6, samplerate),
’path’: ’f6.wav’}],

seekable_image=(fig, ’spectrogram.png’),

repeat=True)

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented pywebaudioplayer, a wrapper
around three JavaScript/HTML5 audio players that allows
them to be conveniently used from within Python. Au-
tomating the bridge between Python and web technologies
allows those players to be used to get auditive feedback
during iterative development, instead of just using them to
present final results. We attempted to bring three players
together in a consistent programming interface, in order to
ease transitioning between them. Each player has its own
use-case, going from displaying single audio files to multi-
track audio in a DAW interface or with custom visualisation.

A unifying wrapper such as pywebaudioplayer will never
be able to provide the same flexibility in configuration as
using the separate players directly, since that’s not its main
objective. We rather strive for improving convenience, at
the expense of trading in some configurability. Nonetheless,
we still plan on increasing the configuration options that
are exposed by the Python wrapper. Particularly for track-
switch, we plan to add more convenience functions such that
it becomes easier to use custom visualisations. One planned
addition is to automatically generate visualisations for each
of the separate tracks that are similar to the overall visual-
isation.

In its current state, pywebaudioplayer is ready for pub-
lic alpha testing. To this end, it has been uploaded to

Table 5: Optional arguments for the trackswitch function with their defaults. Partly adapted from track-
switch.js documentation.

argument name default value description

text ? accompanying text

text_style None CSS style for accompanying text

seekable_image None path to seekable image or tuple with matplotlib.figure.Figure and path to save Figure to
seek_margin None tuple with start and stop offsets as percentage [0-100] of image to align cursor boundaries
images None list with paths to additional images

mute True show mute buttons

solo True show solo buttons

globalsolo True mute all other trackswitch instances when playback starts

repeat False initialise player with repeat button enabled

radiosolo False allow only one track to be soloed at a time

onlyradiosolo False sets both mute to False and radiosolo to True in one argument

spacebar False bind the spacebar to play/pause

tabview False arrange tracks in a tab view

the PyPI package indexr and can be installed using pip as
pip install [--user] pywebaudioplayer . All code, in-
cluding the examples, is available under a MIT licence on
GitHub*, where there’s also an issue tracker to file bugs.
The current version is already fully functional in combina-
tion with WSGI web frameworks, but the interactivity in-
herent to Jupyter Notebooks still requires some workarounds.
In order to improve the user experience, it probably will be
necessary to develop a dedicated Jupyter Notebook plugin
in the future.

Acknowledgements

This work has been partly funded by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) grant
EP/L019981/1 and by the European Union’s Horizon 2020
research and innovation programme under grant agreement

N° 688382.

References

[1] Naomi Aro. waveform-playlist. 2015. URL: https://
naomiaro.github.io/waveform-playlist /.

[2] Sebastian Bock et al. “Madmom: A new Python audio
and music signal processing library”. In: Proceedings
of the 2016 ACM Conference on Multimedia. ACM.
2016, pp. 1174-1178.

[3] Dmitry Bogdanov et al. “ESSENTIA: an open-source
library for sound and music analysis”. In: Proceedings

of the 21st ACM international conference on Multime-
dia. ACM. 2013, pp. 855-858.

[4] Django. Django Software Foundation. 2005. URL:
https://djangoproject.com.
[5] John D. Hunter. “Matplotlib: A 2D graphics environ-

ment.” In: Computing in Science & Engineering 9.3
(2007), pp. 90-95. por: 10.1109/MCSE.2007.55.

[6] Eric Jones, Travis Oliphant, Pearu Peterson, et al.
SciPy: Open source scientific tools for Python. 2001.
URL: http://www.scipy.org/.

[7] katspaugh. wavesurfer.js. 2013. URL:

wavesurfer-js.org.

https : / /

“https://github.com/jpauwels/pywebaudioplayer

8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Thomas Kluyver et al. “Jupyter Notebooks-a publish-
ing format for reproducible computational workflows”.
In: Proceedings of the 20th International Conference
on FElectronic Publishing. 2016, pp. 87-90. por: 10.
3233/978-1-61499-649-1-87.

Brian McFee et al. “librosa: Audio and music signal
analysis in python”. In: Proceedings of the 14th Python
in science conference. 2015, pp. 18-25.

K Jarrod Millman and Michael Aivazis. “Python for
scientists and engineers”. In: Computing in Science
& Engineering 13.2 (2011), pp. 9-12. por: 10.1109/
MCSE.2011.36.

Travis E. Oliphant. A guide to NumPy. Trelgol Pub-
lishing USA, 2006.

Travis E. Oliphant. “Python for scientific computing”.
In: Computing in Science & Engineering 9.3 (2007).
por: 10.1109/MCSE.2007.58.

Mark Otto and Jacob Thornton. Bootstrap. 2011. URL:
http://getbootstrap.com/.

Fernando Pérez and Brian E. Granger. “IPython: a
system for interactive scientific computing”. In: Com-
puting in Science & Engineering 9.3 (2007).

Armin Ronacher et al. Flask: a microframework for
Python web development. 2010. URL: http://flask.
pocoo.org.

Michael Waskom et al. seaborn: v0.8.1 (September
2017). 2017. URL: https://doi.org/10.5281 /zenodo.
883859.

Nils Werner et al. “trackswitch. js: A Versatile Web-
Based Audio Player for Presenting Scientific Results”.
In: Proceedings of the 3rd Web Audio Conference.
2017.

