
Participatory musical improvisations with
Playsound.space

Ariane Stolfi
Music Department,

ECA USP
arianestolfi@gmail.com

Alessia Milo
Centre for Digital Music,

Queen Mary University of
London

a.milo@qmul.ac.uk

Miguel Ceriani
Centre for Digital Music,

Queen Mary University of
London

m.ceriani@qmul.ac.uk

Mathieu Barthet
Centre for Digital Music,

Queen Mary University of
London

m.barthet@qmul.ac.uk

ABSTRACT
Playsound.space is a web-based tool to search for and play
Creative Commons licensed-sounds, which can be applied
to free improvisation, experimental music production and
soundscape composition. It provides fast access to about
400k non-musical and musical sounds provided by Freesound
and allows users to play/loop single or multiple sounds re-
trieved through text-based search. Sound discovery is facil-
itated by the use of semantic searches and sound visual rep-
resentations (spectrograms). After feedback gathered from
user tests and practices with the tool as an instrument, we
identified several directions to develop the expressive and
collaborative capabilities of the tool. We present additional
features for more complex audio processing, and also to en-
hance participation trough a chat system that allows users to
share sound sessions and exchange messages while playing.

1. INTRODUCTION
Playsound [21] is a music making tool that works by

querying sounds from the online sound database Freesound.
org. Until the development of sound recording systems in
the early 20th century, experience of music only occurred
through situated performance [15]. Traditionally, the ability
to perform classical music requires to gain sufficient theoret-
ical and technical skills to understand, decode and interpret
written music through the practice of a musical instrument.
Such acquisition of musical knowledge and the cost of mu-
sical instruments can be seen as barriers to participate in
music making activities.

Despite the process of digitization of music, which brought
access to music production for a larger number of users to-
gether with the dissemination of personal computers, most
interfaces for music making are complex to operate [23],

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2018, September 19–21, 2018, Berlin, Germany.

c© 2018 Copyright held by the owner/author(s).

or too incipient in terms of music expressiveness, acting
more like toys [18]. Little attention has been paid for
novice musical practitioners [19]. Our first design goal is
to develop a music making tool providing access to a rich
palette of sounds that can be used by people unfamiliar
with music production techniques. The system we devel-
oped, Playsound, relies on the use of semantic queries as a
means to access sound content.

2. DESIGN
Playsound was developed to support the main author’s

musical practice, including experimental music and free im-
provisation, with emphasis on the playing process [8] in mu-
sical performance. The main idea for the development of the
tool was to build a platform that could allow playing, loop-
ing and processing sound samples from the Freesound.org
online database, a content provider part of the Audio Com-
mons Ecosystem [13] developed by the UPF-Music Technol-
ogy Group. It was designed to be used in live performance,
so that the musician/performer could access huge number
of sounds without having a large personal sound collection.
It also derived from a difficulty found in using samples dur-
ing live performances, specially when browsing for sounds in
large sound databases, where besides the information con-
tained in the bibliographic metadata, not much describes
the creative content of the sounds. Therefore, users gener-
ally require to listen to a large amount of sounds in order
to choose the ones that can satisfy their needs. This can
be a special problem in contexts such as free improvisation,
where the sound response needs to be quite immediate for
the musician.

One of the main features of Playsound is to offer a vi-
sual tool for searching sounds, such as fast access to about
400k non-musical and musical sounds from Freesound, re-
lying on the spectrogram graphics already provided by the
API [3], enabling to present the results as a collection of im-
ages. After acquiring experience in reading this spectrogram
representations, it is then possible to identify some aspects
of the sonic quality and form impressions of how given sam-
ples will sound like before playing them, especially in terms
of timbre [5] and texture [17].

Freesound.org
Freesound.org
Freesound.org


Figure 1: Screenshot of the tool

As an instrument, Playsound can be used to support collo-
cated musical performance by running on different browsers
on the client side. In the future, we would like to connect
clients over the web to share a same musical session, in a con-
text of networked performances similar to those described
by [14] and [4] (see e.g. [20] for a review on network music
performance technologies).

2.1 Development
We followed an inclusive design approach to create a tool

that could suit both non musicians and musicians. Soft-
ware development followed the agile methodology with an
initial phase supported by frequent feedback from six users
working in media and arts technology and performing arts.
The prototype was then assessed by 18 non musician and
musician participants during free music improvisation and
live soundscape composition sessions lasting 15 to 30 mins
[21]. The evaluation was based on several human com-
puter interaction frameworks including the system usability
scale (SUS) [10] and the creativity support index (CSI) [11].
We also conducted inductive thematic analyses [9] on focus
group discussions and self-reports related to workflow, he-
donic quality, engagement, learning, contexts of use and im-
provements, applied by online questionnaires after the mu-
sic sessions. The prototype obtained high usability (M =
82.5/100, SD = 8.94) and creativity support index scores (M
=71.7, SD =15.6) and no significant differences were found
between non musicians and musicians. Analyses of log be-
havioral data indicated that all the participants engaged cre-
atively during the sessions: number of sound queries (M=8,
SD=2) and number of sounds played and repetitions (M=
24, MIN=9, MAX=101, SD=18). The results favorably sup-
ported the inclusive design goal as the prototype proved to
enable engaging creative musical collaborations without re-
quiring prior musical skills. Moreover, we identified further
design challenges both at prototype and project levels. The
Playsound prototype could provide better audio expressive
controls (e.g. volume, loop, effects, timing) and improve the

sense of identification of played content and co-presence be-
tween performers. To improve sound retrieval, participants
wished to have access to filtering and clustering techniques
and to be able to search for sounds by features, e.g. by
timbre.

2.2 User Interaction
To use Playsound, the user needs a browser compatible

with HTML5 and the Web Audio API[1]. The interface
is currently optimised for the Google Chrome browser. It
does not require authentication or any license and is opened
to everyone. Users just need to type in the URL playsound.
space in the browser window to access the site. A demo video
for the tool is available at: https://youtu.be/yv8T70rawzs.

In the upper left corner of the website, as displayed in Fig-
ure 1, there is an input field for searching sounds. When the
user types an arbitrary search query, the results are shown
in the right side of the page as a collection of spectrograms.
By clicking on a play icon on the image result, the corre-
sponding sound starts to play and a related player is shown
in the left column, below the search result. Any sound can
be played and paused individually, whilst the curved arrow
below the play button triggers the loop, on and off, for each
sample. The first version allowed only the playback, pause,
and looping of the sounds.

After the user tests, as well as performance practices with
the instrument, we identified that it would be important to
have more control on the sound processing. To this end,
we implemented: a queue function, that sends by default
the sound to the playlist without playing, by clicking on
the image, allowing the user to choose the desired speed
and volume before playing the file. We also implemented a
playback rate control that allows to individually change the
speed of the samples.

Besides the search input there is a plus button, which
opens a new page with an empty query. When the search has
more than 40 results, navigational arrows are also displayed
in the menu for browsing into the search results. A built-

playsound.space
playsound.space
https://youtu.be/yv8T70rawzs


in recorder generates a Wav file directly from the browser,
that can be also further layered with other sounds the user
is playing.

Since we aim at developing tools to facilitate correct li-
censing for the generated work, we provide a list of credits
for each sound that requires attribution. Sounds from the
Freesound library can be used in various ways depending on
requirements from the Creative Commons licenses they are
assigned to1. Thus, to avoid misuse, we exclude sounds that
could not be remixed, tweaked, or built upon commercially,
and provide access to sounds in the public domain (cc0) or
with the CC Attribution license (cc-by), which allows trans-
formations and reuse, provided that credit is given to the
original author. In order to reference completely the source,
we implemented a link to access the original file uploaded
to freesound.org, to allow the user to download the sound
at the original or desired quality. To save a selection of
samples, the user just needs to save the URL generated by
the queries. Once the page is loaded, all the sounds will be
loaded in the left column of the site.

2.3 System Architecture
The system works as a single page application[16] pro-

grammed mostly in JavaScript, using the Angular.js frame-
work on the client side and Node.js on the server side. The
two way data binding provided by the Angular framework
allows a fast response from the Freesound REST API, mean-
ing results can be obtained directly while typing a search
query. The majority of processing happens on the client
side and the back-end part of the code deals only with the
authentication process with the Freesound API and the re-
trieval of the information from the REST API. Recent lines
of development have seen also the implementation of a sound
recommendation system [24] using similarities based on the
spectral centroid (see e.g. [6] for a discussion on the spectral
centroid). We also integrated a translation feature [22] and
a chat system relying on sockets.

When a sound is loaded in the playlist, the identifier (ID)
from Freesound is added to the URL and a custom object is
generated with the corresponding controls. Sounds can be
also removed from the playlist, or faded using the volume
controls. In the current development of the system, the main
page serves as a single player tool, to explore the different
sounds generated by the query and mix them in a creative
way. With respect to the version developed during the user
testing in [21], additional features were developed such as
a seek cursor which updates the position of the playhead
along the sound duration. The cursor is also updating as
the sound plays, giving feedback to the user on how fast
the sound is being played. This simple feedback from the
playback, together with the manipulation of the playback
rate, is visualised directly on the image of the sound loaded,
allowing the user to identify the different sounds and mixing
them during their rendering. Particular care has been taken
into making the application scalable both for the use on a
computer or a smartphone, customising the CSS layout with
visible coloured elements and text showing the information
about the sound and the controls values beside the controls.
After implementing a custom loop selection and a panning
slider, the interface was redesigned to show panning and
playback rate only when hovering on the icon of a menu,

1https://creativecommons.org/licenses/

next to the other controls.

2.4 Audio Processing
The audio processing is relying on the Web Audio

API to connect the sounds together in the AudioContext
through multiple GainNode objects. The system,
originally based on individual HTML media players,
employing MediaElementAudioSourceNode, was changed
to allow the control of the AudioBuffer and the
AudioBufferSourceNode, as referenced in the Web Audio
API [1]. Many properties from the HTML player in the orig-
inal version were found convenient for our uses, such as loop,
playbackRate, volume, currentTime, and event listeners al-
lowing immediate binding with AngularJS. However, in or-
der to answer the desire of manipulating the buffers with-
out having to rely on the media object, we decided first to
replace the layout of the interface of the original HTML
object, hiding its controls, then we ported all the prop-
erties of the player to the AudioBufferSourceNode. The
current system available at Playsound.space is employing
the AudioBuffer object, triggering a secondary Ajax re-
quest to retrieve the sound file from Freesound, decoding
the data with audioContext.decodeAudioData(), creating
an AudioBufferSourceNode and passing the buffer to the
Node.

Additionally, a StereoPanner Node allows the user to se-
lect the panning position of each sound in the master mix,
effectively remixing sounds on the fly in the browser. This
mixing feature, together with the possibility to record the
audio in a wave file storing the IDs of the sounds, and a
master volume control on the top, enhances the potential
that the instrument offers to play live and document the
performances taking place.

We decided to avoid external libraries to manipulate the
buffers to allow the buffering processes to be exposed in
their simple administration. We noticed that simple tools
available in the HTMLAudioElement as the ability to play
and pause, or seek using the currentTime, became more
difficult to manage when using the AudioBuffer, specifi-
cally due to the dependency of the SourceNode from the
AudioContext such as the necessity of calculating during
the playback the time elapsed from the beginning of the
creation of the SourceNode, which happens when a sound
is clicked. Moreover the Event Listeners available on the
HTMLAudioElement, retrievable also when the original con-
trols are hidden, are to our knowledge not fully supported
on the AudioBufferSourceNode, which might have encour-
aged others to develop additional libraries for playback and
manipulation.

In the player interface we implemented a slider to con-
trol playback speed, draggable cursors to set the loop size,
plus panning and volume control on the sound, as described
in [22]. Every player instance then connects to the final
destination, whose gain is controlled by a master volume
slider, and the session is rendered on the client side in the
browser. After porting the functionalities of the original
HTML player to the AudioBuffer and testing them in real
use cases, we noticed, especially with slow network, that the
AudioBuffer was less convenient when the sounds loaded
presented a longer duration. Knowing that the HTML Au-
dio Element offers the possibility of playing the sound while
it loads in the buffer, we are currently considering to manage
the samples differently according to their duration.

https://creativecommons.org/licenses/
Playsound.space


� �

� �
�

�

playsound
user

freesound 
community

sounds, 
spectrograms 
and metadata

freesound 
server

playsound 
server

authentication 
server 

queries
html/

javascript 
templates

Figure 2: System Diagram

2.5 Code, Participatory Chat and Recom-
mendation

Playsound.space is an open source project and its support-
ing code can be accessed at https://github.com/arianestolfi/
audioquery-server. The new features presented here, allow-
ing more control of the playback of the different sounds,
following a series of observations during musical sessions be-
tween users, can be trialled by playing with the system at
the URL Playsound.space.

Technology-mediated participatory music is a growing
field investigating the design of systems to include audiences
in live music performance (see e.g. [25] for a review). The
addition of collaborative features into Playsound, such as a
multi-user chat, enables to use the tool in a participatory
context. The chat feature, together with the custom def-
initions for the audio buffers, has first been implemented
in the development branch https://github.com/arianestolfi/
audioquery-server/tree/chat and employs the socket.io [2]
library for Node.js to allow users to exchange text messages
while visiting the corresponding URL. The chat environment
can be experienced at Playsound.space/chat. The text de-
livered through the messages is turned into hypertext and
can trigger queries to the Freesound database upon click.

Audio content recommendation has been traditionally ap-
plied for the selection of recorded content by media produc-
ers [7] [12] but it can also be applied to enrich the selection
of sounds during the compositional stage. In order to im-
prove the relevance of the system, we implemented a recom-
mendation system [24] to search into other Audio Commons
resources (e.g. Jamendo2, Europeana3) using semantic web
technologies, and to find similar sounds using acoustical sim-
ilarity measures. To improve accessibility, we included a
translation feature using Yandex to translate queries from
other languages [22].

2https://www.jamendo.com/
3https://www.europeana.eu/portal/en

3. FUTURE WORK
Playsound can be considered as a work-in-progress pro-

totype and new features are developed as new requirements
are outlined by its users. We identified several lines of devel-
opment which could improve the usability of the interface.
The next priorities for the development of the system should
be first to enhance the chat system to allow the users to cre-
ate different rooms to chat and share sounds, and second
to interact within the same sound session; this development
is aimed at fostering not just collocated but also networked
performance. As we already implemented envisioned fea-
tures such as a recommendation system, a translation ser-
vice, panning and loop manipulation, we would like to focus
on testing connection speed differences in the playback of
the content using AudioBuffers in comparison to the HTML-
MediaElements, as the latter might be more convenient for
samples with a duration longer than one minute.

4. CONCLUSION
We discussed hereby novel features of Playsound.space,

a web-based tool to query and play Creative Commons
licensed-sounds, suitable for free improvisation, experimen-
tal music production and soundscape composition. These
features, including playback rate control and a seekable cur-
sor placed on the spectrogram of the sound, provide ad-
ditional control for the manipulation of about 400k non-
musical and musical sounds provided by Freesound, allow-
ing users to play/loop single or multiple sounds retrieved
through text-based search. Whilst the sound discovery is
facilitated by use of semantic searches and sound visual rep-
resentations (spectrograms), participation in collaborative
musical explorations is being supported by the introduction
of an additional chat system allowing the users to exchange
messages during the sonic interactions.

5. ACKNOWLEDGMENTS
We acknowledge support from University of São Paulo’s

Nu-Som Research group and the CAPES PDSE grant
awarded to Ariane Stolfi. This work is also supported by the
EU H2020 Audio Commons Initiative grant (No. 688382).

6. REFERENCES
[1] Web audio API W3C working draft.

https://www.w3.org/TR/webaudio/, 2015.

[2] Socket.IO. https://socket.io/, 2018.

[3] V. Akkermans, F. Font Corbera, J. Funollet,
B. de Jong, G. Roma Trepat, S. Togias, and X. Serra.
Freesound 2: An improved platform for sharing audio
clips. ISMIR Conference Proceedings, 2011.

[4] J. J. Arango, M. Tomoyoshi, F. Iazzetta, and
M. Queiroz. Brazilian challenges on network music. In
Proc. of the Sound And Music Computer Conf.
(SMC), pages 1–7, 2013.

[5] M. Barthet, P. Depalle, R. Kronland-Martinet, and
S. Ystad. Acoustical correlates of timbre and
expressiveness in clarinet performance. Music
Perception: An Interdisciplinary Journal,
28(2):135–154, 2010.

[6] M. Barthet, R. Kronland-Martinet, and S. Ystad.
Improving musical expressiveness by time-varying

https://github.com/arianestolfi/audioquery-server
https://github.com/arianestolfi/audioquery-server
Playsound.space
https://github.com/arianestolfi/audioquery-server/tree/chat
https://github.com/arianestolfi/audioquery-server/tree/chat
Playsound.space/chat
https://www.jamendo.com/
https://www.europeana.eu/portal/en
https://www.w3.org/TR/webaudio/
https://socket.io/


brightness shaping. In International Symposium on
Computer Music Modeling and Retrieval, pages
313–336. Springer, 2007.

[7] C. Baume, G. Fazekas, M. Barthet, D. Marston, and
M. Sandler. Selection of audio features for music
emotion recognition using production music. In Audio
Engineering Society Conference: 53rd International
Conference: Semantic Audio. Audio Engineering
Society, 2014.

[8] C. Bergstrøm-Nielsen. Keywords in musical free
improvisation. Music and Arts in Action, 5(1):11–18,
2016.

[9] V. Braun and V. Clarke. Using thematic analysis in
psychology. Qualitative Research in Psychology,
3(2):77–101, jan 2006.

[10] J. Brooke et al. Sus-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7, 1996.

[11] E. Cherry and C. Latulipe. Quantifying the Creativity
Support of Digital Tools through the Creativity
Support Index. ACM Transactions on
Computer-Human Interaction, 21(4):1–25, jun 2014.

[12] G. Fazekas, M. Barthet, and M. B. Sandler. Demo
paper: The bbc desktop jukebox music
recommendation system: A large scale trial with
professional users. In Multimedia and Expo Workshops
(ICMEW), 2013 IEEE International Conference on,
pages 1–2. IEEE, 2013.

[13] F. Font, T. Brookes, G. Fazekas, M. Guerber,
A. La Burthe, D. Plans, M. D. Plumbley,
M. Shaashua, W. Wang, and X. Serra. Audio
commons: bringing creative commons audio content to
the creative industries. In Audio Engineering Society
Conference: 61st International Conference: Audio for
Games. Audio Engineering Society, 2016.

[14] R. Haefeli. netpd-a collaborative realtime networked
music making environment written in pure data. In
Linux Audio Conference 2013, volume 1. Citeseer,
2013.

[15] F. Iazzetta. A Música, o Corpo e as Máquinas. Revista
Opus, 4:1–20, 1997.

[16] M. A. Jadhav, B. R. Sawant, and A. Deshmukh.
Single page application using angularjs. International
Journal of Computer Science and Information
Technologies, 6(3):2876–2879, 2015.

[17] L. Lu, L. Wenyin, and H.-J. Zhang. Audio textures:
Theory and applications. IEEE transactions on speech
and audio processing, 12(2):156–167, 2004.

[18] J. McDermott, T. Gifford, A. Bouwer, and M. Wagy.
Should Music Interaction Be Easy? 2013.

[19] E. M. Miletto, M. S. Pimenta, F. Bouchet, J.-P.
Sansonnet, and D. Keller. Principles for Music
Creation by Novices in Networked Music
Environments. Journal of New Music Research,
40(3):205–216, sep 2011.

[20] C. Rottondi, C. Chafe, C. Allocchio, and A. Sarti. An
overview on networked music performance
technologies. IEEE Access, 4:8823–8843, 2016.

[21] A. Stolfi, M. Ceriani, L. Turchet, and M. Barthet.
Playsound.space: Inclusive Free Music Improvisations
Using Audio Commons. In Proc. Nime, 2018.

[22] A. Stolfi, V. F. Milo, Alessia, M. Ceriani, and

M. Barthet. Playsound.space: An Ubiquitous System
in Progress. In Proc. 8th Workshop on Ubiquitous
Music, 2018.

[23] A. D. S. Stolfi. Graphic Interfaces for Computer
Music: Two Models. In CMMR, pages 1–8, 2016.

[24] F. Viola, A. Stolfi, A. Milo, M. Ceriani, M. Barthet,
and G. Fazekas. Playsound.space: enhancing a live
performance tool with semantic recommendations. In
Proc. 1st SAAM Workshop. ACM, 2018.

[25] Y. Wu, L. Zhang, N. Bryan-Kinns, and M. Barthet.
Open symphony: Creative participation for audiences
of live music performances. IEEE MultiMedia,
24(1):48–62, 2017.


	Introduction
	Design
	Development
	User Interaction
	System Architecture
	Audio Processing
	Code, Participatory Chat and Recommendation

	Future work
	Conclusion
	Acknowledgments
	References

