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ABSTRACT 
This work enables native audio plugin development using the 
Web Audio API and other web technologies. Hybrid forms where 
DSP algorithms are implemented in both JavaScript and native 
C++, and distributed forms where web technologies are used only 
for the user interface, are also supported. Various implementation 
options are explored, and the most promising option is 
implemented and evaluated. We found that the solution is able to 
operate at 128 sample buffer sizes, and that the performance of the 
Web Audio API audio graph is not compromised. The proof-of-
concept solution also maintains compatibility with existing Web 
Audio API implementations. The average MIDI latency was 24 
ms, which is high when comparing with fully native plugin 
solutions. Backwards compatibility also reduces usability when 
working with multiple plugin instances. We conclude that the 
second iteration needs to break backwards compatibility in order 
to overcome the MIDI latency and multi-plugin support issues. 

1.  INTRODUCTION 
The first Web Audio API implementation appeared in Google 
Chrome v10 (released 2011), followed by Safari (2012), Firefox 
and Opera (2013), and Edge (2015). The API has matured ever 
since its first introduction, and the specification is now 
transitioning to final standardization stages [1]. The specification 
exposes 21 AudioNodes, which are modular building blocks that – 
when connected together into an audio graph – implement 
composite DSP algorithms such as audio effect processors, 
synthesizers and other audio related web applications. These high 
level DSP algorithms are patched together using JavaScript. A 
recent addition called AudioWorklet [2] also enables custom, low-
level DSP algorithm development to extend the available set of 
building blocks. 

AudioWorklets run JavaScript (JS) and WebAssembly (WASM) 
code. The latter enables the use of general purpose programming 
languages such as C++ in web audio development [3]. Domain 
specific languages such as Faust [4] and Csound [5] are also 
supported through WASM. Though C++, Faust and Csound are 
commonly used in native audio plugin development, pure 
JavaScript and WASM implementations have not yet been viable 
in desktop Digital Audio Workstations (DAWs). This work 
explores various options to achieve that goal, and provides a proof 

of concept solution that enables any Web Audio API code to run 
as a native desktop audio plugin (see Figure 1). 

 

Figure 1. Native plugin host (top right) with two native Web 
Audio API plugins (left), and a VST spectrum analyzer. 

The concrete contributions of the present work are: i) a list of 
mandatory requirements for bridging the gap between native 
plugin and web environments, ii) a survey of implementation 
options, iii) proof-of-concept implementation based on the most 
promising option, and iv) three native Web Audio API plugins for 
its evaluation. Source code for the implementations is available at 
https://github.com/jariseon/web-audio-vst 

The organization of this paper is as follows. Section 2 details the 
requirements and explores options for their implementation. The 
proof-of-concept solution is described in Section 3, and evaluated 
in Section 4. Section 5 concludes. 

2.  REQUIREMENTS AND OPTIONS 

2.1  Requirements 
A native audio plugin is a shared code library which a plugin host 
application loads dynamically during runtime. The functionality 
of an audio plugin is divided into two parts. The controller 
handles non-real-time tasks such as configuration, plugin lifecycle 
management, preset loading and saving, and so on. It also usually 
provides a graphical user interface (GUI) for plugin parameter 
manipulation. The processor performs block-based audio 
processing and rendering tasks in real-time, and routes MIDI and 
automation events to the plugin’s DSP engine. Because of real-
time performance requirements, hosts run these two parts in 
separate threads. 

The most prominent requirements for a native Web Audio API 
plugin are as follows. The plugin must: 
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R1 provide an environment to run Web Audio API 
R2 operate within a shared dynamic link library 
R3 provide a mechanism for native ↔ browser communication 
R4 be able to host a GUI 
R5 process audio IO streams in real-time 
R6 provide a mechanism for time-stamped MIDI IO 

This work will focus on these requirements in the context of the 
VST2 [6] plugin standard, which despite its age and shortcomings 
is still the most ubiquitous cross-platform native audio plugin 
format. Our goal is to maintain maximum compatibility with 
existing Web Audio API implementations. 

2.2  Implementation Options 
R1 - Web Audio environments 
This requirement calls for a JS engine and implementation of the 
Web Audio API. In addition to browsers themselves, native 
webview widgets encapsulate both operating system specific JS 
engines (Nitro/MacOS, Chakra/Windows, JSC/Linux), and at 
least partial Web Audio API implementations. Most well-known 
third party application frameworks offer webviews as well. 

Web technologies have become increasingly popular in native 
application development, thanks to frameworks such as NW.js1, 
Electron2 and Chromium Embedded Framework (CEF) [7]. Their 
main architectural difference is that CEF is able to operate either 
as a standalone or as a webview, whereas NW.js and Electron run 
only as standalone applications. All three are based on Chromium 
content module, which offers the core functionality of Google's 
Chrome browser including its V8 JS engine and Web Audio API 
implementation. NW.js and Electron also embed Node.js3, which 
integrates the JS engine with custom script and binary code 
modules. Partial Web Audio API implementations4,5 are available 
as such Node.js modules. 

In summary, environments for running Web Audio API include 
browsers, webviews, and Chromium-based frameworks (see 
Figure 2). The latter environments, including Google Chrome 
browser, currently offer the most up-to-date Web Audio API 
implementation. On the other hand, native webviews are the most 
lightweight solutions, as they are built into the operating system. 

 
Figure 2. Environment options illustrated with dashed boxes. 

R2 - operating as a shared library 
Webviews (including CEF) are able to operate within shared 
libraries, whereas browsers and NW.js/Electron require inter-app 
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communication (IAC) mechanism between the shared plugin 
library and the remoted Web Audio API application. The web 
audio environment thus needs to either run in-process inside the 
native plugin, or as a remote service through an IAC mechanism 
(e.g., shared memory or (web)sockets). In-process is the preferred 
option, as it minimizes latency and reduces the amount of 
architectural complexity. 

R3 - link between native and browser contexts 
Webviews (including CEF) provide inter-process communication 
(IPC) APIs for linking the native plugin environment with the 
browser context running Web Audio. These APIs allow 
asynchronous calls from native side to browser side, and vice 
versa. Most APIs only support textual data, and therefore binary 
data needs to be transformed into the less efficient base64 format. 
An alternative approach is to use websockets, which enable both 
textual and binary transfers. In that scenario the native plugin 
implements a websocket server that accepts connections from a 
localhost webview or remoted application. The downside of 
websocket implementations is increased complexity and potential 
conflicts with websocket port number allocations. 

R4 - GUI embedding 
Web technologies are well suited for plugin GUI development, 
and provide an attractive platform even  for traditional audio 
plugins that implement their DSP in native code. In native plugin 
architectures the host provides a top level window, into which the 
plugin is expected to embed its GUI as a subview. Webviews 
(including CEF) support this requirement, whereas standalone 
application GUIs are in separate windows external to the host’s 
window. Though both paradigms support this requirement, the 
distinctions are notable from a user experience perspective. 

Operating system webviews are by definition not cross-platform 
solutions. In contrast, CEF provides a uniform user experience 
across platforms. The CEF release distribution format footprint is 
50-100MB (depending on included functionality), which makes 
its separate bundling with each individual plugin installation 
impractical. We found however that with proper settings separate 
bundling is unnecessary, as will be discussed later. 

R5 - real-time audio IO 
Web audio runs in a high priority thread which is not directly 
accessible from the browser's JS main thread. The deprecated 
ScriptProcessorNode (SPN) is able to push and pull audio buffers 
to/from Web Audio API graph, although with a cost of increased 
latency: the minimum SPN buffer size is 256 samples, and due to 
thread-hopping and double-buffering, the total added latency is 
512 samples. SPN is also susceptible to audio dropouts when the 
main application thread is busy with other duties. The recently 
released AudioWorkletNode/Processor pair cuts down the total 
latency to 256 samples, but is still prone to audio glitches due to 
garbage collection operations. IAC requires another double-
buffering round, increasing total latencies to 1024 and 512 
samples, respectively. This is unacceptable in pro audio 
environments. 

Another option is to use a MediaStreamAudioDestinationNode, 
and couple it with a local WebRTC peer implementation in the 
native plugin, or in the remoted app. However, WebRTC audio 
streams are lossy and come with an increased latency. Opus codec 
running in CELT mode provides the best option in terms of sound 
quality and latency, but this is still suboptimal for pro audio 
scenarios. 



The most straightforward way to hook into web audio stream is 
via a third-party virtual audio cable6. Unfortunately current 
browser engines provide only limited access to audio device 
output selection. Virtual audio cable routing within plugin host 
device chains is also complicated (if not impossible), producing 
detrimental effects to creative workflows. In addition, low level 
device driver installation calls for administrator privileges. 

Finally, environments based on the Chromium content module 
provide an alternative in-process hook into the web audio graph. 
This requires patching and recompiling a custom Chromium 
version, but provides a preferred solution in terms of latency and 
integration. 

R6 - MIDI 
Web Midi is supported in Chrome browser and Chromium based 
frameworks. Other environments can use IPC APIs to pass MIDI 
between JS and native plugin using interop or websockets. Web 
Midi requires user permission, which is unfortunately unsupported 
in current CEF version. This requires another Chromium patch, 
but would again provide an in-process solution to the problem. 

2.3  Summary 
Table 1 summarizes the implementation options for available 
environments (rows) versus requirements (columns). The cells 
marked with in-process and interop indicate preferred options in 
terms of seamless integration, efficiency and minimal latency. 
Note however that the cells enclosed in parentheses in column R5 
offer only suboptimal audio IO routing because of inefficient 
hooks based on SPN, AudioWorklet or WebRTC. 

As can be seen, CEF provides the most optimal support. The lack 
of direct audio and midi stream access make standard webviews 
less attractive. Browsers and Chromium-based application 
frameworks are standalone applications, and therefore not well 
suited for the task at hand. The remaining sections thus propose a 
solution based on CEF and patched Chromium. Our design goal is 
to minimize the the amount of required modifications in 
Chromium codebase, while still satisfying the requirements listed 
in section 2.1. 

Table 1. Implementation Options 

R1 R2 R3 R4 R5 R6 
browser n/a iac external (iac) midi/iac 

nwjs/electr n/a iac external (iac) midi/iac 
webview in-process interop in-process (interop) interop 

cef in-process interop in-process in-process interop 
 

3.  IMPLEMENTATION 
The implementation process was iterative, but consisted of the 
following major stages. A VST2 skeleton plugin was first 
developed in Xcode 9.3. The CEF source code distribution 3.3359 
(including Chromium stable 66) was downloaded, patched and 
compiled. The proof-of-concept plugins were developed as the 
final step. 

3.1  System Architecture 
The system architecture is shown in Figure 3. The native plugin 
host first loads and instantiates the WebAudioVST plugin, and 
enters a communication phase using VST API calls. The plugin 
                                                                    
6 https://github.com/mattingalls/Soundflower, http://jackaudio.org 

creates a CEFBridge instance, which in turn loads and initializes 
the CEF dynamic library. CEFBridge hides the implementation 
details of the webview, and communicates with CEF through the 
CEF API. Chromium, and consequently CEF, operate in a multi-
process configuration. The browser process interfaces the 
operating system, and launches the renderer process(es). The 
renderers are sandboxed and among other things, responsible for 
JavaScript execution. The browser and renderer communicate 
using asynchronous messaging. Chromium’s audio streams are 
however synchronous thanks to a paired socket / shared memory 
mechanism between the processes. 

 

Figure 3. System architecture. 

3.2  R2 - Operating as a shared library 
Before proceeding with other requirements, we first ensured that 
CEF operates within a VST2 plugin as expected, and that it does 
not require modifications to the VST host. This proved to be the 
case with the following caveats. The CEF message loop needs to 
be integrated with the plugin host using the non-blocking 
DoMessageLoopWork() function. This function needs to be called 
repeatedly to perform a single CEF message loop iteration (see 
idle() function in Section 3.4). We also found that CEF 
initialization is best performed during the first idle() call: plugin 
main window is only partially realized in prior VST callbacks. 

3.3  R3 – Controller API 
We want to emphasize that the proposed solution is capable of 
running arbitrary Web Audio API implementations inside native 
Digital Audio Workstations (DAWs). However, to get the greatest 
benefit from the solution, we are introducing a controller API to 
streamline native Web Audio API plugin development. 

The controller API provides an asynchronous communication 
channel between the native plugin C++ environment and the JS 
context in the embedded webview. CEF provides mechanisms for 
calling JS functions from the native side, calls from JS to the 
native side, as well as binding to browser events at the native side. 
The CEFBridge class hides the sandboxing-induced complexity 
with two RESTful methods, which are implemented at both JS 
and in native code. postMessage(data) sends arbitrary text 
format data from one endpoint to the other. The message 
eventually appears at the other endpoint's onmessage(data) event 
handler. This is similar to the Web Audio API AudioWorklet 



implementation, and in that sense one embodiment of this work 
(i.e., the hybrid plugin form) can be viewed as an external 
AudioWorkletProcessor that is implemented in native C++ code. 
The data passed between the endpoints is formatted as JSON, and 
is compliant to the Web Audio Plugin payload proposal [8, 
section 4.2]. A composite JS Web Audio Plugin class will thereby 
interface the native WebAudioVST plugin without additional 
wrappers. 

The WebAudioVST plugin is initially configured as a stereo 
in/out processor. A Web Audio implementation conforming to the 
controller API publishes its descriptor by calling postMessage	
({verb:"set",	key:"descriptor",	value:descriptor}). The 
descriptor JSON contains information about the number of audio 
IO ports and their channels, midi IO setup, preferred window size, 
parameter space and so on. CEFBridge parses the descriptor and 
informs the host with a VST2 API ioChanged() reconfiguration 
request. Web Audio implementations that do not conform to the 
controller API fall back to the default stereo in/out configuration. 

3.4  R4 - GUI 
VST2 supports generic and custom GUIs. The host creates generic 
GUIs by iteratively querying the plugin parameter space using 
indexed getParameter*() calls to retrieve the name, display 
string, unit and current value of each parameter. The CEFBridge 
class transforms the received descriptor (if any) into VST2 
compliant responses. Custom GUIs are extended from the VST2 
AEffEditor interface class. In this case, the host provides a top 
level window and calls the open() method in the GUI interface 
class. The plugin may then embed the CEF webview as a subview 
of the provided window. We found that the top level window is 
not yet instantiated in the operating system window manager at 
the time of the open() call, and therefore embed fails. The issue 
was solved by delaying CEF webview instantiation until the first 
idle() function call. The host calls this function repeatedly 
during runtime, which provides a means for CEF messageloop 
integration introduced in Section 3.2. 

The proposed solution also supports use cases where the 
embedded webview only implements the GUI, while audio 
processing is performed in native C++ code running in the plugin. 
During the prototyping stage, plugin developers may use an 
external localhost HTTP server to provide HTML/CSS/JS content 
that implement the browser GUI. This also enables live source 
code editing and debugging while the plugin is running natively in 
the host. During runtime, the GUI (running in the webview) and 
the plugin (running natively inside the host) communicate using 
the asynchronous controller API mechanism described in section 
3.3. 

During the deployment stage, HTML/CSS/JS files may be 
packaged into a single zip file which is distributed with the plugin. 
The zip file may be protected with a password and encrypted for 
elementary intellectual property protection. The CEFBridge 
initialization phase first loads and decompresses the (encrypted 
and) zipped content using CEF functions. The bridge then 
navigates to the index.html file, and exploits CEF resource request 
interception to serve the files for the GUI implementation. 
However, zip encapsulation is beyond the proof-of-concept 
implementation scope, and is included here for completeness of 
discussion. 

We found that plugins are able to share a single CEF installation 
instance, and therefore it needs to be downloaded and installed 
only once. This is achieved with matched settings in plugin and 

CEF bundles, as detailed in the source code release associated 
with this paper. 

3.5  R5 - Audio IO 
VST2 block-based DSP processing takes place in the plugin 
host’s audio thread. The host pushes and pulls audio buffers 
to/from the plugin by repeatedly calling the processReplacing 
method with three arguments. The first two are arrays of input and 
output audio buffer pointers, while the third one determines the 
number of samples the host is expecting to push/pull. The 
CEFBridge class simply delegates the processing call to the 
custom Chromium patch implemented in this work. 

The plugin and CEF browser process (see Figure 3) are in the 
same address space. The VST2 processReplacing() call 
propagates through standard CEF DLL bindings, and ends up in 
the browser process. The custom Chromium patch replaces 
Chromium’s existing native AudioManager functionality - which 
is responsible for interfacing native audio IO by pushing/pulling 
web audio to/from the renderer process - with a cross-platform 
VirtualAudioManager implementation that pushes and pulls the 
audio buffers from/to VST2 plugin instead. 

The actual streaming is provided by VirtualAudioInputStream 
and VirtualAudioOutputStream classes, also produced in this 
work. These classes wrap VST2 audio buffers in AudioBus 
structures, and call Chromium's AudioInputCallback::OnData 
(to push VST2 audio into the Web Audio API graph), and 
AudioSourceCallback::OnMoreData (to pull from the Web 
Audio API graph). Each Web Audio API AudioContext opens a 
dedicated output stream. 

The custom implementation passes an additional fourth parameter 
to Chromium's browser process. The parameter holds the VST 
host's current time, which is passed along in OnData and 
OnMoreData calls. The time appears in the AudioContext 
currentTime attribute, and facilitates sample accurate Web Audio 
API rendering in sync with VST host time. 
VirtualAudioInputStream (i.e., VST2 plugin input) is available 
as a MediaStreamAudioSource, and VirtualAudioOutputStream 
(i.e., VST2 plugin output) becomes AudioContext.destination. 

Audio can naturally be pre/post-processed in the native plugin 
before or after pulling the Web Audio API graph. This enables 
hybrid Web Audio API plugins which are developed partly in JS 
and partly in C++. 

3.6  R6 - MIDI 
VST2 provides an array of timestamped MIDI events in a 
companion processEvents callback, which is invoked on the 
audio thread when there are events to be processed during the next 
processReplacing audio slice. Our aim here is to provide a 
virtual MIDI cable between the native plugin and Chromium's JS 
context. 

We first patched the Chromium renderer process to grant 
permission to navigator.requestMIDIAccess. Another patch 
was prepared for Chromium's browser process MidiManagerMac 
class, to create a single virtual midi input/output port pair instead 
of native MIDI endpoints collected from CoreMidi. This approach 
works well for a single plugin instance. The pool of available 
Chromium MIDI ports is however shared with all JavaScript 
contexts, which is undesirable for multi-plugin scenarios. This 
calls for an alternative approach that restricts each JS context to 
access only its specific virtual MIDI ports. 



We ended up patching navigator.requestMIDIAccess and other 
Web Midi classes in JavaScript. The patch creates a virtual MIDI 
port pair, and links them with native side C++ endpoints provided 
by CEFBridge. The C++ endpoints reside in the CEF renderer 
process (see Figure 3), which in turn is connected to the CEF 
browser process via IPC layer. The CEF browser lives in plugin 
address space to interface with VST2 processEvents and 
sendVstEventsToHost calls. The patch is injected from the local 
file system into the JS context prior to content loading, and does 
not require modifications to existing scripts loaded from web. 

An additional benefit of the proposed solution is that, unlike in 
standard browser implementations, MIDI message timestamps are 
in sync with the AudioContext.currentTime (and therefore 
plugin host song time). The timestamps are also sample accurate. 
This is achieved by reflecting current song position and the 
deltaFrames field of a VstEvent in the MIDI message timestamp. 

4.  EVALUATION AND DISCUSSION 
Three proof-of-concept native Web Audio API plugins were 
implemented for evaluation. The first plugin is a minimal 
JavaScript DSP effect that re-implements VST2 AGain starter 
project using A) the stock GainNode and B) an equivalent 
implementation as an AudioWorklet. Its Web Audio API graph is 
MediaStreamSource → Gain/AudioWorklet → DestinationNode. 
The GUI is implemented in HTML/CSS and equipped with a 
toggle to switch between GainNode and AudioWorklet, and a 
single knob for gain control (see Figure 4). The plugin HTML file 
is loaded from the local file system, and it complies with the 
controller API of Section 3.3. The second plugin allows 
navigation to any URL in order to evaluate compatibility with 
existing Web Audio applications. The third plugin is a hybrid 
JS/C++ solution for latency evaluation: the plugin responds to 
MIDI note on/off messages and renders a Web Audio API square 
wave oscillator, positive impulse train from an AudioWorklet, and 
negative impulse train from native C++. Impulses are rendered at 
the start of each render buffer while MIDI note is active. 

 
Figure 4. AGain native Web Audio API plugin in Bitwig. 

The plugins were evaluated in two host applications: FL MiniHost 
Modular7 v1.5.7 is able to load multiple plugins into a native 
equivalent of the Web Audio API graph, where each plugin is a 
node (see Figure 1). Bitwig8 v2.3.4 (demo version) is a Digital 
Audio Workstation, where plugins are cascaded into device chains 
as shown in Figure 4. Evaluation was performed using MacBook 

                                                                    
7 https://www.image-

line.com/support/FLHelp/html/plugins/Minihost Modular.htm 
8 https://www.bitwig.com 

Pro laptop Mid-2014, 2.2 GHz i7, 16 GB RAM, running MacOS 
10.13.5. 

4.1  Evaluation 
Plugin host buffer sizes were set to 128 samples, which is the 
render quantum of Chromium's Web Audio API implementation. 
All plugins were able to produce glitch-free audio with the 128 
sample (3ms) buffer size, without extra FIFO buffers in the 
rendering pipeline. However, we noticed occasional artefacts with 
the second plugin when navigating to URLs with relatively 
complex audio graphs. This was expected, since Chromium's 
native MacOS AudioManager doubles the 128 sample buffer size 
when pulling the graph. WebAssembly AudioWorklets operated 
without issues and with a good performance. 

CPU load was evaluated using MacOS Activity Monitor. The load 
in the renderer process (Helper app) was dependent on the 
complexity of the audio graph and the amount of visual rendering. 
The renderer process CPU load was identical to the load inspected 
from Chrome, when navigating to the corresponding URL with 
the browser. 

FL MiniHost called idle() method periodically at 54 Hz refresh 
rate on average. Updates were however interrupted while 
interacting with the MiniHost main window, albeit audio 
remained free of dropouts even if plugin screen turned static. 
Bitwig’s plugin screen refresh rate was initially similar, but after a 
certain time period idle() calls were interrupted permanently. 
More robust operation was achieved by running CEF message 
loop integration in a separate thread. This also enabled 
independent screen refresh rate control. A related CEF limitation 
however disables GPU acceleration when the CEF message loop 
is integrated into host application (which is mandatory for this 
work). We hope that future CEF versions remove this limitation. 

Latency was evaluated by mixing together three oscillators (see 
Figure 5): stereo Web Audio API square wave, positive impulse 
train AudioWorklet (right channel, bottom) and negative impulse 
train from native plugin (left channel, top). All sources responded 
to the same MIDI note on/off event. 

 
Figure 5. Latency (see text). Onsets are 128 samples apart. 

As can be seen, the native plugin impulse train starts before the 
Web Audio API square wave (two render quanta in the figure), 
and AudioWorklet positive impulse train (at bottom) follows 
exactly one render quantum after the square wave onset. Onset 
deviations are due to asynchronous MIDI messaging: native 
plugin reacts to the events immediately, but when forwarded to 
the webview, the events have to first enter the renderer process 
main thread, and then travel over to the audio thread in 
AudioWorkletGlobalScope. We found that event forwarding was 
more performant with CEF SendProcessMessage (SPM) when 
coupled with a bound JS function at renderer side. With SPM the 
MIDI latency was 9 render quanta on average (median 8.5, min 3, 



max 15). Direct CEF ExecuteJavaScript (EJS) function averaged 
12.2 and (13.5, 4, 16), respectively. Variance was high in both 
cases. 

Offline processing (i.e., freeze or bounce track in the host DAW) 
failed to work. This is a challenging task for any system that 
operates with asynchronous events and complex thread 
scheduling. Bitwig's real-time bounce however worked perfectly. 

The HTML/CSS/JS files for the first plugin were loaded from the 
local filesystem. This worked without issues. The first plugin also 
complied to the controller API, which also worked well (see 
Figure 4). We noticed however that hosts do not respond to VST2 
ioConfig() request properly. This is problematic for initialization 
and requires descriptor duplication in native code. 

CEF binaries were not bundled in the plugins. Therefore it seems 
to be possible to share a single CEF installation between different 
plugins. The number of input MediaStreams is limited to one 
instance, even if opened from separate browser/renderer 
processes. This is in contrast to output streams, where each 
AudioContext opens a new stream. 

4.2  Discussion 
The performance of native Web Audio API plugins exceeded our 
expectations, and the proposed solution holds a definite promise 
for their implementation. Security is naturally compromised when 
comparing with day-to-day internet browsing, but we do not see 
that a prominent an issue: the proposed solution still runs Web 
Audio API in a sandbox, while traditional native audio plugins 
have full access to host machine. The evaluation however brought 
up issues which need to be addressed in a forthcoming iteration. 

The most prominent issue is MIDI latency. Since one render 
quantum is 128 samples, SPM function average latency at 48 kHz 
is 24 ms. In addition, high variance in latency times makes host's 
latency compensation efforts impossible. Future iteration needs to 
pass MIDI events with audio buffers instead of sending them as 
asynchronous messages. This enables sample accurate rendering 
and solid latency compensation for AudioWorklets. 

The second issue is multi-plugin support: due to limited input 
stream access the current solution can only support one Web 
Audio API effect plugin instance. And while it is possible to run 
several output streams in parallel (e.g., multiple synthesizers or 
drum machines do not pose an issue), the association between 
output stream and the plugin instance is not straight forward. With 
these in mind, it seems that instead of patching input and output 
audio endpoints in the CEF browser process, it might be 
beneficial to introduce a new pair of Web Audio API nodes 
specifically tailored for the scenario at hand. These nodes may 
also serve as generalized ExternalAudioSource/Destination 
nodes to support other use cases. Introducing new nodes would 
however break compatibility with existing Web Audio 
applications, which was one of the goals of this work. 

The third issue is related to VST2 specification, which is not 
anymore up-to-date with modern plugin requirements. VST2 
standard is informal, and leaves room for interpretation. Hosts do 
not unfortunately behave alike, which complicates adoption. We 
are planning to address this by using a plugin framework such as 
iPlug2 [9] or JUCE, which have tackled the problem already. 

5.  CONCLUSION 
This work enables rapid native audio plugin prototyping and 
development using the Web Audio API and other web 
technologies. Native plugin audio input is captured using a Web 
Audio API MediaStreamAudioSource node, while native plugin 
audio output is available as AudioContext.destination. Native 
host MIDI is routed through virtual Web Midi ports. 

Requirements were first collected and strategies for their 
implementation explored. The most promising solution was found 
to be based on Chromium Embedded Framework (CEF), which 
was then modified to suit the requirements. Evaluation proved that 
the solution maintains compatibility with existing Web Audio API 
implementations, albeit at a cost of increased MIDI latency and 
reduced usability when running multiple plugins simultaneously. 

Future work comprises A) dropping backwards compatibility to 
improve MIDI latency and multi-plugin support, B) expanding 
from VST2 into other plugin formats by embedding CEFBridge in 
plugin frameworks like iPlug2 and JUCE, and C) ensuring 
compliance with most popular plugin hosts and a proposed Web 
Audio Plugin standard [10]. We are also considering binary 
distribution by committing the implemented Chromium patch to 
be integrated into future CEF releases. 
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