
Native Web Audio API Plugins

Jari Kleimola
webaudiomodules.org

jari.kleimola@gmail.com

Owen Campbell
Amptrack Technologies AB

owen@ampedstudio.com

ABSTRACT
This work enables native audio plugin development using the
Web Audio API and other web technologies. Hybrid forms where
DSP algorithms are implemented in both JavaScript and native
C++, and distributed forms where web technologies are used only
for the user interface, are also supported. Various implementation
options are explored, and the most promising option is
implemented and evaluated. We found that the solution is able to
operate at 128 sample buffer sizes, and that the performance of the
Web Audio API audio graph is not compromised. The proof-of-
concept solution also maintains compatibility with existing Web
Audio API implementations. The average MIDI latency was 24
ms, which is high when comparing with fully native plugin
solutions. Backwards compatibility also reduces usability when
working with multiple plugin instances. We conclude that the
second iteration needs to break backwards compatibility in order
to overcome the MIDI latency and multi-plugin support issues.

1. INTRODUCTION
The first Web Audio API implementation appeared in Google
Chrome v10 (released 2011), followed by Safari (2012), Firefox
and Opera (2013), and Edge (2015). The API has matured ever
since its first introduction, and the specification is now
transitioning to final standardization stages [1]. The specification
exposes 21 AudioNodes, which are modular building blocks that –
when connected together into an audio graph – implement
composite DSP algorithms such as audio effect processors,
synthesizers and other audio related web applications. These high
level DSP algorithms are patched together using JavaScript. A
recent addition called AudioWorklet [2] also enables custom, low-
level DSP algorithm development to extend the available set of
building blocks.

AudioWorklets run JavaScript (JS) and WebAssembly (WASM)
code. The latter enables the use of general purpose programming
languages such as C++ in web audio development [3]. Domain
specific languages such as Faust [4] and Csound [5] are also
supported through WASM. Though C++, Faust and Csound are
commonly used in native audio plugin development, pure
JavaScript and WASM implementations have not yet been viable
in desktop Digital Audio Workstations (DAWs). This work
explores various options to achieve that goal, and provides a proof

of concept solution that enables any Web Audio API code to run
as a native desktop audio plugin (see Figure 1).

Figure 1. Native plugin host (top right) with two native Web
Audio API plugins (left), and a VST spectrum analyzer.

The concrete contributions of the present work are: i) a list of
mandatory requirements for bridging the gap between native
plugin and web environments, ii) a survey of implementation
options, iii) proof-of-concept implementation based on the most
promising option, and iv) three native Web Audio API plugins for
its evaluation. Source code for the implementations is available at
https://github.com/jariseon/web-audio-vst

The organization of this paper is as follows. Section 2 details the
requirements and explores options for their implementation. The
proof-of-concept solution is described in Section 3, and evaluated
in Section 4. Section 5 concludes.

2. REQUIREMENTS AND OPTIONS

2.1 Requirements
A native audio plugin is a shared code library which a plugin host
application loads dynamically during runtime. The functionality
of an audio plugin is divided into two parts. The controller
handles non-real-time tasks such as configuration, plugin lifecycle
management, preset loading and saving, and so on. It also usually
provides a graphical user interface (GUI) for plugin parameter
manipulation. The processor performs block-based audio
processing and rendering tasks in real-time, and routes MIDI and
automation events to the plugin’s DSP engine. Because of real-
time performance requirements, hosts run these two parts in
separate threads.

The most prominent requirements for a native Web Audio API
plugin are as follows. The plugin must:

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2018, September 19–21, 2018, Berlin, Germany.
© 2018 Copyright held by the owner/author(s).

R1 provide an environment to run Web Audio API
R2 operate within a shared dynamic link library
R3 provide a mechanism for native ↔ browser communication
R4 be able to host a GUI
R5 process audio IO streams in real-time
R6 provide a mechanism for time-stamped MIDI IO

This work will focus on these requirements in the context of the
VST2 [6] plugin standard, which despite its age and shortcomings
is still the most ubiquitous cross-platform native audio plugin
format. Our goal is to maintain maximum compatibility with
existing Web Audio API implementations.

2.2 Implementation Options
R1 - Web Audio environments
This requirement calls for a JS engine and implementation of the
Web Audio API. In addition to browsers themselves, native
webview widgets encapsulate both operating system specific JS
engines (Nitro/MacOS, Chakra/Windows, JSC/Linux), and at
least partial Web Audio API implementations. Most well-known
third party application frameworks offer webviews as well.

Web technologies have become increasingly popular in native
application development, thanks to frameworks such as NW.js1,
Electron2 and Chromium Embedded Framework (CEF) [7]. Their
main architectural difference is that CEF is able to operate either
as a standalone or as a webview, whereas NW.js and Electron run
only as standalone applications. All three are based on Chromium
content module, which offers the core functionality of Google's
Chrome browser including its V8 JS engine and Web Audio API
implementation. NW.js and Electron also embed Node.js3, which
integrates the JS engine with custom script and binary code
modules. Partial Web Audio API implementations4,5 are available
as such Node.js modules.

In summary, environments for running Web Audio API include
browsers, webviews, and Chromium-based frameworks (see
Figure 2). The latter environments, including Google Chrome
browser, currently offer the most up-to-date Web Audio API
implementation. On the other hand, native webviews are the most
lightweight solutions, as they are built into the operating system.

Figure 2. Environment options illustrated with dashed boxes.

R2 - operating as a shared library
Webviews (including CEF) are able to operate within shared
libraries, whereas browsers and NW.js/Electron require inter-app

1 https://nwjs.io
2 https://electronjs.org 2 https://electronjs.org
3 https://nodejs.org
4 https://github.com/LabSound/LabSound
5 https://github.com/audiojs/web-audio-api

communication (IAC) mechanism between the shared plugin
library and the remoted Web Audio API application. The web
audio environment thus needs to either run in-process inside the
native plugin, or as a remote service through an IAC mechanism
(e.g., shared memory or (web)sockets). In-process is the preferred
option, as it minimizes latency and reduces the amount of
architectural complexity.

R3 - link between native and browser contexts
Webviews (including CEF) provide inter-process communication
(IPC) APIs for linking the native plugin environment with the
browser context running Web Audio. These APIs allow
asynchronous calls from native side to browser side, and vice
versa. Most APIs only support textual data, and therefore binary
data needs to be transformed into the less efficient base64 format.
An alternative approach is to use websockets, which enable both
textual and binary transfers. In that scenario the native plugin
implements a websocket server that accepts connections from a
localhost webview or remoted application. The downside of
websocket implementations is increased complexity and potential
conflicts with websocket port number allocations.

R4 - GUI embedding
Web technologies are well suited for plugin GUI development,
and provide an attractive platform even for traditional audio
plugins that implement their DSP in native code. In native plugin
architectures the host provides a top level window, into which the
plugin is expected to embed its GUI as a subview. Webviews
(including CEF) support this requirement, whereas standalone
application GUIs are in separate windows external to the host’s
window. Though both paradigms support this requirement, the
distinctions are notable from a user experience perspective.

Operating system webviews are by definition not cross-platform
solutions. In contrast, CEF provides a uniform user experience
across platforms. The CEF release distribution format footprint is
50-100MB (depending on included functionality), which makes
its separate bundling with each individual plugin installation
impractical. We found however that with proper settings separate
bundling is unnecessary, as will be discussed later.

R5 - real-time audio IO
Web audio runs in a high priority thread which is not directly
accessible from the browser's JS main thread. The deprecated
ScriptProcessorNode (SPN) is able to push and pull audio buffers
to/from Web Audio API graph, although with a cost of increased
latency: the minimum SPN buffer size is 256 samples, and due to
thread-hopping and double-buffering, the total added latency is
512 samples. SPN is also susceptible to audio dropouts when the
main application thread is busy with other duties. The recently
released AudioWorkletNode/Processor pair cuts down the total
latency to 256 samples, but is still prone to audio glitches due to
garbage collection operations. IAC requires another double-
buffering round, increasing total latencies to 1024 and 512
samples, respectively. This is unacceptable in pro audio
environments.

Another option is to use a MediaStreamAudioDestinationNode,
and couple it with a local WebRTC peer implementation in the
native plugin, or in the remoted app. However, WebRTC audio
streams are lossy and come with an increased latency. Opus codec
running in CELT mode provides the best option in terms of sound
quality and latency, but this is still suboptimal for pro audio
scenarios.

The most straightforward way to hook into web audio stream is
via a third-party virtual audio cable6. Unfortunately current
browser engines provide only limited access to audio device
output selection. Virtual audio cable routing within plugin host
device chains is also complicated (if not impossible), producing
detrimental effects to creative workflows. In addition, low level
device driver installation calls for administrator privileges.

Finally, environments based on the Chromium content module
provide an alternative in-process hook into the web audio graph.
This requires patching and recompiling a custom Chromium
version, but provides a preferred solution in terms of latency and
integration.

R6 - MIDI
Web Midi is supported in Chrome browser and Chromium based
frameworks. Other environments can use IPC APIs to pass MIDI
between JS and native plugin using interop or websockets. Web
Midi requires user permission, which is unfortunately unsupported
in current CEF version. This requires another Chromium patch,
but would again provide an in-process solution to the problem.

2.3 Summary
Table 1 summarizes the implementation options for available
environments (rows) versus requirements (columns). The cells
marked with in-process and interop indicate preferred options in
terms of seamless integration, efficiency and minimal latency.
Note however that the cells enclosed in parentheses in column R5
offer only suboptimal audio IO routing because of inefficient
hooks based on SPN, AudioWorklet or WebRTC.

As can be seen, CEF provides the most optimal support. The lack
of direct audio and midi stream access make standard webviews
less attractive. Browsers and Chromium-based application
frameworks are standalone applications, and therefore not well
suited for the task at hand. The remaining sections thus propose a
solution based on CEF and patched Chromium. Our design goal is
to minimize the the amount of required modifications in
Chromium codebase, while still satisfying the requirements listed
in section 2.1.

Table 1. Implementation Options

R1 R2 R3 R4 R5 R6
browser n/a iac external (iac) midi/iac

nwjs/electr n/a iac external (iac) midi/iac
webview in-process interop in-process (interop) interop

cef in-process interop in-process in-process interop

3. IMPLEMENTATION
The implementation process was iterative, but consisted of the
following major stages. A VST2 skeleton plugin was first
developed in Xcode 9.3. The CEF source code distribution 3.3359
(including Chromium stable 66) was downloaded, patched and
compiled. The proof-of-concept plugins were developed as the
final step.

3.1 System Architecture
The system architecture is shown in Figure 3. The native plugin
host first loads and instantiates the WebAudioVST plugin, and
enters a communication phase using VST API calls. The plugin

6 https://github.com/mattingalls/Soundflower, http://jackaudio.org

creates a CEFBridge instance, which in turn loads and initializes
the CEF dynamic library. CEFBridge hides the implementation
details of the webview, and communicates with CEF through the
CEF API. Chromium, and consequently CEF, operate in a multi-
process configuration. The browser process interfaces the
operating system, and launches the renderer process(es). The
renderers are sandboxed and among other things, responsible for
JavaScript execution. The browser and renderer communicate
using asynchronous messaging. Chromium’s audio streams are
however synchronous thanks to a paired socket / shared memory
mechanism between the processes.

Figure 3. System architecture.

3.2 R2 - Operating as a shared library
Before proceeding with other requirements, we first ensured that
CEF operates within a VST2 plugin as expected, and that it does
not require modifications to the VST host. This proved to be the
case with the following caveats. The CEF message loop needs to
be integrated with the plugin host using the non-blocking
DoMessageLoopWork() function. This function needs to be called
repeatedly to perform a single CEF message loop iteration (see
idle() function in Section 3.4). We also found that CEF
initialization is best performed during the first idle() call: plugin
main window is only partially realized in prior VST callbacks.

3.3 R3 – Controller API
We want to emphasize that the proposed solution is capable of
running arbitrary Web Audio API implementations inside native
Digital Audio Workstations (DAWs). However, to get the greatest
benefit from the solution, we are introducing a controller API to
streamline native Web Audio API plugin development.

The controller API provides an asynchronous communication
channel between the native plugin C++ environment and the JS
context in the embedded webview. CEF provides mechanisms for
calling JS functions from the native side, calls from JS to the
native side, as well as binding to browser events at the native side.
The CEFBridge class hides the sandboxing-induced complexity
with two RESTful methods, which are implemented at both JS
and in native code. postMessage(data) sends arbitrary text
format data from one endpoint to the other. The message
eventually appears at the other endpoint's onmessage(data) event
handler. This is similar to the Web Audio API AudioWorklet

implementation, and in that sense one embodiment of this work
(i.e., the hybrid plugin form) can be viewed as an external
AudioWorkletProcessor that is implemented in native C++ code.
The data passed between the endpoints is formatted as JSON, and
is compliant to the Web Audio Plugin payload proposal [8,
section 4.2]. A composite JS Web Audio Plugin class will thereby
interface the native WebAudioVST plugin without additional
wrappers.

The WebAudioVST plugin is initially configured as a stereo
in/out processor. A Web Audio implementation conforming to the
controller API publishes its descriptor by calling postMessage	
({verb:"set",	key:"descriptor",	value:descriptor}). The
descriptor JSON contains information about the number of audio
IO ports and their channels, midi IO setup, preferred window size,
parameter space and so on. CEFBridge parses the descriptor and
informs the host with a VST2 API ioChanged() reconfiguration
request. Web Audio implementations that do not conform to the
controller API fall back to the default stereo in/out configuration.

3.4 R4 - GUI
VST2 supports generic and custom GUIs. The host creates generic
GUIs by iteratively querying the plugin parameter space using
indexed getParameter*() calls to retrieve the name, display
string, unit and current value of each parameter. The CEFBridge
class transforms the received descriptor (if any) into VST2
compliant responses. Custom GUIs are extended from the VST2
AEffEditor interface class. In this case, the host provides a top
level window and calls the open() method in the GUI interface
class. The plugin may then embed the CEF webview as a subview
of the provided window. We found that the top level window is
not yet instantiated in the operating system window manager at
the time of the open() call, and therefore embed fails. The issue
was solved by delaying CEF webview instantiation until the first
idle() function call. The host calls this function repeatedly
during runtime, which provides a means for CEF messageloop
integration introduced in Section 3.2.

The proposed solution also supports use cases where the
embedded webview only implements the GUI, while audio
processing is performed in native C++ code running in the plugin.
During the prototyping stage, plugin developers may use an
external localhost HTTP server to provide HTML/CSS/JS content
that implement the browser GUI. This also enables live source
code editing and debugging while the plugin is running natively in
the host. During runtime, the GUI (running in the webview) and
the plugin (running natively inside the host) communicate using
the asynchronous controller API mechanism described in section
3.3.

During the deployment stage, HTML/CSS/JS files may be
packaged into a single zip file which is distributed with the plugin.
The zip file may be protected with a password and encrypted for
elementary intellectual property protection. The CEFBridge
initialization phase first loads and decompresses the (encrypted
and) zipped content using CEF functions. The bridge then
navigates to the index.html file, and exploits CEF resource request
interception to serve the files for the GUI implementation.
However, zip encapsulation is beyond the proof-of-concept
implementation scope, and is included here for completeness of
discussion.

We found that plugins are able to share a single CEF installation
instance, and therefore it needs to be downloaded and installed
only once. This is achieved with matched settings in plugin and

CEF bundles, as detailed in the source code release associated
with this paper.

3.5 R5 - Audio IO
VST2 block-based DSP processing takes place in the plugin
host’s audio thread. The host pushes and pulls audio buffers
to/from the plugin by repeatedly calling the processReplacing
method with three arguments. The first two are arrays of input and
output audio buffer pointers, while the third one determines the
number of samples the host is expecting to push/pull. The
CEFBridge class simply delegates the processing call to the
custom Chromium patch implemented in this work.

The plugin and CEF browser process (see Figure 3) are in the
same address space. The VST2 processReplacing() call
propagates through standard CEF DLL bindings, and ends up in
the browser process. The custom Chromium patch replaces
Chromium’s existing native AudioManager functionality - which
is responsible for interfacing native audio IO by pushing/pulling
web audio to/from the renderer process - with a cross-platform
VirtualAudioManager implementation that pushes and pulls the
audio buffers from/to VST2 plugin instead.

The actual streaming is provided by VirtualAudioInputStream
and VirtualAudioOutputStream classes, also produced in this
work. These classes wrap VST2 audio buffers in AudioBus
structures, and call Chromium's AudioInputCallback::OnData
(to push VST2 audio into the Web Audio API graph), and
AudioSourceCallback::OnMoreData (to pull from the Web
Audio API graph). Each Web Audio API AudioContext opens a
dedicated output stream.

The custom implementation passes an additional fourth parameter
to Chromium's browser process. The parameter holds the VST
host's current time, which is passed along in OnData and
OnMoreData calls. The time appears in the AudioContext
currentTime attribute, and facilitates sample accurate Web Audio
API rendering in sync with VST host time.
VirtualAudioInputStream (i.e., VST2 plugin input) is available
as a MediaStreamAudioSource, and VirtualAudioOutputStream
(i.e., VST2 plugin output) becomes AudioContext.destination.

Audio can naturally be pre/post-processed in the native plugin
before or after pulling the Web Audio API graph. This enables
hybrid Web Audio API plugins which are developed partly in JS
and partly in C++.

3.6 R6 - MIDI
VST2 provides an array of timestamped MIDI events in a
companion processEvents callback, which is invoked on the
audio thread when there are events to be processed during the next
processReplacing audio slice. Our aim here is to provide a
virtual MIDI cable between the native plugin and Chromium's JS
context.

We first patched the Chromium renderer process to grant
permission to navigator.requestMIDIAccess. Another patch
was prepared for Chromium's browser process MidiManagerMac
class, to create a single virtual midi input/output port pair instead
of native MIDI endpoints collected from CoreMidi. This approach
works well for a single plugin instance. The pool of available
Chromium MIDI ports is however shared with all JavaScript
contexts, which is undesirable for multi-plugin scenarios. This
calls for an alternative approach that restricts each JS context to
access only its specific virtual MIDI ports.

We ended up patching navigator.requestMIDIAccess and other
Web Midi classes in JavaScript. The patch creates a virtual MIDI
port pair, and links them with native side C++ endpoints provided
by CEFBridge. The C++ endpoints reside in the CEF renderer
process (see Figure 3), which in turn is connected to the CEF
browser process via IPC layer. The CEF browser lives in plugin
address space to interface with VST2 processEvents and
sendVstEventsToHost calls. The patch is injected from the local
file system into the JS context prior to content loading, and does
not require modifications to existing scripts loaded from web.

An additional benefit of the proposed solution is that, unlike in
standard browser implementations, MIDI message timestamps are
in sync with the AudioContext.currentTime (and therefore
plugin host song time). The timestamps are also sample accurate.
This is achieved by reflecting current song position and the
deltaFrames field of a VstEvent in the MIDI message timestamp.

4. EVALUATION AND DISCUSSION
Three proof-of-concept native Web Audio API plugins were
implemented for evaluation. The first plugin is a minimal
JavaScript DSP effect that re-implements VST2 AGain starter
project using A) the stock GainNode and B) an equivalent
implementation as an AudioWorklet. Its Web Audio API graph is
MediaStreamSource → Gain/AudioWorklet → DestinationNode.
The GUI is implemented in HTML/CSS and equipped with a
toggle to switch between GainNode and AudioWorklet, and a
single knob for gain control (see Figure 4). The plugin HTML file
is loaded from the local file system, and it complies with the
controller API of Section 3.3. The second plugin allows
navigation to any URL in order to evaluate compatibility with
existing Web Audio applications. The third plugin is a hybrid
JS/C++ solution for latency evaluation: the plugin responds to
MIDI note on/off messages and renders a Web Audio API square
wave oscillator, positive impulse train from an AudioWorklet, and
negative impulse train from native C++. Impulses are rendered at
the start of each render buffer while MIDI note is active.

Figure 4. AGain native Web Audio API plugin in Bitwig.

The plugins were evaluated in two host applications: FL MiniHost
Modular7 v1.5.7 is able to load multiple plugins into a native
equivalent of the Web Audio API graph, where each plugin is a
node (see Figure 1). Bitwig8 v2.3.4 (demo version) is a Digital
Audio Workstation, where plugins are cascaded into device chains
as shown in Figure 4. Evaluation was performed using MacBook

7 https://www.image-

line.com/support/FLHelp/html/plugins/Minihost Modular.htm
8 https://www.bitwig.com

Pro laptop Mid-2014, 2.2 GHz i7, 16 GB RAM, running MacOS
10.13.5.

4.1 Evaluation
Plugin host buffer sizes were set to 128 samples, which is the
render quantum of Chromium's Web Audio API implementation.
All plugins were able to produce glitch-free audio with the 128
sample (3ms) buffer size, without extra FIFO buffers in the
rendering pipeline. However, we noticed occasional artefacts with
the second plugin when navigating to URLs with relatively
complex audio graphs. This was expected, since Chromium's
native MacOS AudioManager doubles the 128 sample buffer size
when pulling the graph. WebAssembly AudioWorklets operated
without issues and with a good performance.

CPU load was evaluated using MacOS Activity Monitor. The load
in the renderer process (Helper app) was dependent on the
complexity of the audio graph and the amount of visual rendering.
The renderer process CPU load was identical to the load inspected
from Chrome, when navigating to the corresponding URL with
the browser.

FL MiniHost called idle() method periodically at 54 Hz refresh
rate on average. Updates were however interrupted while
interacting with the MiniHost main window, albeit audio
remained free of dropouts even if plugin screen turned static.
Bitwig’s plugin screen refresh rate was initially similar, but after a
certain time period idle() calls were interrupted permanently.
More robust operation was achieved by running CEF message
loop integration in a separate thread. This also enabled
independent screen refresh rate control. A related CEF limitation
however disables GPU acceleration when the CEF message loop
is integrated into host application (which is mandatory for this
work). We hope that future CEF versions remove this limitation.

Latency was evaluated by mixing together three oscillators (see
Figure 5): stereo Web Audio API square wave, positive impulse
train AudioWorklet (right channel, bottom) and negative impulse
train from native plugin (left channel, top). All sources responded
to the same MIDI note on/off event.

Figure 5. Latency (see text). Onsets are 128 samples apart.

As can be seen, the native plugin impulse train starts before the
Web Audio API square wave (two render quanta in the figure),
and AudioWorklet positive impulse train (at bottom) follows
exactly one render quantum after the square wave onset. Onset
deviations are due to asynchronous MIDI messaging: native
plugin reacts to the events immediately, but when forwarded to
the webview, the events have to first enter the renderer process
main thread, and then travel over to the audio thread in
AudioWorkletGlobalScope. We found that event forwarding was
more performant with CEF SendProcessMessage (SPM) when
coupled with a bound JS function at renderer side. With SPM the
MIDI latency was 9 render quanta on average (median 8.5, min 3,

max 15). Direct CEF ExecuteJavaScript (EJS) function averaged
12.2 and (13.5, 4, 16), respectively. Variance was high in both
cases.

Offline processing (i.e., freeze or bounce track in the host DAW)
failed to work. This is a challenging task for any system that
operates with asynchronous events and complex thread
scheduling. Bitwig's real-time bounce however worked perfectly.

The HTML/CSS/JS files for the first plugin were loaded from the
local filesystem. This worked without issues. The first plugin also
complied to the controller API, which also worked well (see
Figure 4). We noticed however that hosts do not respond to VST2
ioConfig() request properly. This is problematic for initialization
and requires descriptor duplication in native code.

CEF binaries were not bundled in the plugins. Therefore it seems
to be possible to share a single CEF installation between different
plugins. The number of input MediaStreams is limited to one
instance, even if opened from separate browser/renderer
processes. This is in contrast to output streams, where each
AudioContext opens a new stream.

4.2 Discussion
The performance of native Web Audio API plugins exceeded our
expectations, and the proposed solution holds a definite promise
for their implementation. Security is naturally compromised when
comparing with day-to-day internet browsing, but we do not see
that a prominent an issue: the proposed solution still runs Web
Audio API in a sandbox, while traditional native audio plugins
have full access to host machine. The evaluation however brought
up issues which need to be addressed in a forthcoming iteration.

The most prominent issue is MIDI latency. Since one render
quantum is 128 samples, SPM function average latency at 48 kHz
is 24 ms. In addition, high variance in latency times makes host's
latency compensation efforts impossible. Future iteration needs to
pass MIDI events with audio buffers instead of sending them as
asynchronous messages. This enables sample accurate rendering
and solid latency compensation for AudioWorklets.

The second issue is multi-plugin support: due to limited input
stream access the current solution can only support one Web
Audio API effect plugin instance. And while it is possible to run
several output streams in parallel (e.g., multiple synthesizers or
drum machines do not pose an issue), the association between
output stream and the plugin instance is not straight forward. With
these in mind, it seems that instead of patching input and output
audio endpoints in the CEF browser process, it might be
beneficial to introduce a new pair of Web Audio API nodes
specifically tailored for the scenario at hand. These nodes may
also serve as generalized ExternalAudioSource/Destination
nodes to support other use cases. Introducing new nodes would
however break compatibility with existing Web Audio
applications, which was one of the goals of this work.

The third issue is related to VST2 specification, which is not
anymore up-to-date with modern plugin requirements. VST2
standard is informal, and leaves room for interpretation. Hosts do
not unfortunately behave alike, which complicates adoption. We
are planning to address this by using a plugin framework such as
iPlug2 [9] or JUCE, which have tackled the problem already.

5. CONCLUSION
This work enables rapid native audio plugin prototyping and
development using the Web Audio API and other web
technologies. Native plugin audio input is captured using a Web
Audio API MediaStreamAudioSource node, while native plugin
audio output is available as AudioContext.destination. Native
host MIDI is routed through virtual Web Midi ports.

Requirements were first collected and strategies for their
implementation explored. The most promising solution was found
to be based on Chromium Embedded Framework (CEF), which
was then modified to suit the requirements. Evaluation proved that
the solution maintains compatibility with existing Web Audio API
implementations, albeit at a cost of increased MIDI latency and
reduced usability when running multiple plugins simultaneously.

Future work comprises A) dropping backwards compatibility to
improve MIDI latency and multi-plugin support, B) expanding
from VST2 into other plugin formats by embedding CEFBridge in
plugin frameworks like iPlug2 and JUCE, and C) ensuring
compliance with most popular plugin hosts and a proposed Web
Audio Plugin standard [10]. We are also considering binary
distribution by committing the implemented Chromium patch to
be integrated into future CEF releases.

6. REFERENCES
[1] Adenot, P., Toy, R., Wilson, C., and Rogers, C. 2018. Web

Audio API. W3C Working Draft, June 19, 2018. Available
online at http://www.w3.org/TR/webaudio/. (editor’s draft at
http://webaudio.github.io/web-audio-api/).

[2] Choi, H. 2018. AudioWorklet: The future of web audio. In
Proc. 43rd Int. Computer Music Conference (ICMC-2018),
Daegu, Korea.

[3] Kleimola, J. and Larkin, O. 2015. Web Audio modules. In
Proc. 12th Sound and Music Computing Conference (SMC
2015), Maynooth, Ireland.

[4] Letz, S., Orlarey, Y., and Fober, D. 2017. Compiling Faust
Audio DSP Code to WebAssembly, In Proc. 3rd Web Audio
Conference (WAC 2017), London, UK.

[5] Lazzarini, V., Costello, E., Yi, S., and Fitch, J. 2014. Csound
on the Web. In Proc. Linux Audio Developers' Conference
(LAC-2014).

[6] Steinberg, VST3 : New Standard for Virtual Studio
Technology,https://www.steinberg.net/en/company/technolo
gies/vst3.html

[7] Chromium Embedded Framework,
https://bitbucket.org/chromiumembedded/cef

[8] Buffa, M., Lebrun, J., Kleimola, J., Larkin, O., and Letz, S.
2018. Towards an open Web Audio plug-in standard. In
Companion Proc. The Web Conference 2018 (WWW '18).
Lyon, France.

[9] Larkin, O., Harker, A., Kleimola J. 2018. iPlug 2: Desktop
Audio Plug-in Framework Meets Web Audio Modules. In
Proc. 4th Web Audio Conference (WAC-2018), Berlin,
Germany.

[10] Buffa, M., Lebrun, J., Kleimola J., Larkin O., Pellerin, G.,
and Letz, S. 2018. WAP: Ideas For a Web Audio Plug-in
Standard. In Proc. 4th Web Audio Conference (WAC-2018),
Berlin, Germany.

