
dspNode: Real-time remote audio rendering

Thomas Dodds
thomas@creativelycommon.co.uk

ABSTRACT

The author has been experimenting with various implementations
of real-time cloud based audio rendering, keeping the client side
application as an extremely light weight remote controller,
receiving the fully rendered audio stream from a cloud based
audio rendering engine.

The general benefits, drawbacks and conclusions will be
discussed with a plausible and functional example application
given for the reader’s own performance evaluation.

1. INTRODUCTION

Increasing resource requirements of client side rendering can
mean complex and innovative rendering is simply unachievable.
Although the Web Audio API has provided native processing
speed, concurrent audio channel mixing and processing can still
put large demands on the devices network connectivity, CPU
usage and memory usage. This issue is further compounded when
OS level power management and security measures kick in,
especially on mobile devices. The client’s browser is not always
the best place to render audio.

Native local DSP processes are quick and efficient, but when
multiple remotely served audio assets (live or prerecorded) are
attempted to be served simultaneously bottlenecks begin to
surface around network connectivity. The browser’s internal
javascript engine memory management and the host CPU speed
begin to cause issues for the audio engine, causing buffering,
dropouts and disruption to playback.

By shifting some of these responsibilities to the server, the
intention is to overcome the bottlenecks mentioned, deliver
complex audio delivery on mobile devices and to determine its
suitability in a production environment exploring the options
available around scalability.

For the purpose of demonstration, a simple eight channel audio
mixing console has been created, with console functionality such
as bussing, pan, reverb, delay and dynamic compression. This
example application will be used to demonstrate dspNode and its
performance across devices.

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). ​Attribution:​ owner/author(s).
Web Audio Conference WAC-2018​, ​September 19–21, 2018, Berlin, Germany.
© 2018 Copyright held by the owner/author(s).

The intent is to further research and develop the concept to write a
generic DSP focused standalone rendering infrastructure that will
instantiate, boot and scale simply from a simple client side
network request.

As internet speeds have increased, the performance of such
systems have now become almost indistinguishable to client-side
rendered performance. Given that audio generally requires much
less network bandwidth than video, delivery speeds should be
sufficient when delivering audio.

Currently, the dspNode client library is available open-sourced on
Github with the intent to add a draft of the server rendering code 1

after more testing. A preconfigured arrangement of five dspNodes
are set up for the purposes of the demo.

1.1 Related works
Earlier works have explored the field of low latency remotely
computed audio streaming such as ​CloudOrch: A Portable
SoundCard in the Cloud ​and open source libraries such as 2

websockets-streaming-audio . ​However, it appears that the 3

published works exploring the subject focuses primarily on the
use of HTML5 Websockets to stream the audio data across the
internet, being the most appropriate technology at the time. This
papers example utalises more recent technologies.

Within the gaming industry, remote rendering has been around
since around 2000 and its usage has now become common place
with services such as Playstation Now GForce Now . These 4

systems are often proprietary and offer no way to render or stream
the audio alone.

2. RENDERING BOTTLENECKS
The performance bottlenecks can generally be broken down into
the following areas.

2.1 Memory consumption
The browser has very limited access to the computers storage
devices (by design) and must keep all assets within the browser
process’s sandbox RAM allocation. Careful garbage collection
implemented by browser vendors can help to alleviate this issue
by removing unneeded resources from memory.

1 ​https://github.com/dodds-cc/dspNode
2 ​http://www.nime.org/proceedings/2014/nime2014_541.pdf
3 ​https://www.npmjs.com/package/websockets-streaming-audio
4 ​https://en.wikipedia.org/wiki/Cloud_gaming

However, if we consider multichannel audio mixing, we need all
(or at least a lot more) channel data to hand for summing and
other related DSP operations. An uncompressed mono audio
channel is roughly 50MB, multiply this, by even a moderate eight
channels of audio, and we already have nearly 500MB of RAM
just for raw audio data assets.

2.2 Networking
Remote media resources are pulled into the client browser session
over TCP/IP with the speed subject to the clients own network
connection speed. A browser is typically limited to creating ten
simultaneous network sockets for TCP/IP traffic.

Innovative streaming solutions such as HLS or DASH streaming
have helped to solve this problem by splitting audio and video
content into small blocks, fetched from the server on request,
removing the need for large memory resources. However, such a
system is still limited by the connection bandwidth, unable to pull
in large numbers of resources simultaneously to be rendered in
real-time.

Browsers typically use TCP protocols to ensure error free delivery
of packets over a network. This error handling adds a significant
overhead to data transfer speeds especially when it comes to low
latency communications.

2.3 Multichannel audio and codec support
Whilst desktop browsers generally have no problem playing back
multiple audio objects simultaneously, there are differences in the
way audio playback has been implemented on some mobile
browsers such as Safari on the iOS.

Multichannel audio and audio codec support varies widely across
devices with no standard pattern and limited common ground.
Workarounds include downloading uncompressed audio buffers
prior to playback, but this puts additional load on the network and
memory usage.

Codec support ranges widely across browsers, especially around
multichannel support and channel ordering. Although quite tricky
to keep track of, a list of supported codecs across devices and
browsers is given here . 5

2.4 Host processing speed
While the most common audio DSP operations put a small strain
on the host CPU with the Web Audio API, other operations such
as real-time convolution reverb or spatial positioning put bigger
demands on the hosts processor. This is especially the case when
processing multiple channels, each with independent time and
frequency based transformations.

Mobile device browsers also often heavily limit the amount of
processing speed available. Device specific power saving
measures can make this problem worse.

5
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_
media_formats

3. IMPLEMENTATION

The general aim was to set up an example application that
offloads all rendering bottlenecks to the remote rendering engine
(dspNode), leaving the client as a simple lightweight control
application sending commands upstream, streaming only the fully
rendered high quality summed audio mix and status updates
downstream.

Figure 1. Simple diagram of application concept

Although various technology combinations have been tested to
render the audio and send it across the internet, a specific
combination as been chosen to focus on as it demonstrates the
fundamental aspects of the project well, without too many
complexities to get in the way. Other approaches are described
later in the paper.

3.1 Control signals
Initially, remote audio engine control signals were implemented
over a simple REST interface. This worked well for simple
interactions such as transport control but became complicated and
slow when finer controls were required. Also, making a new
network request for each command added significant delay to the
round trip exchange.

WebSockets were tested to communicate between the client and
its corresponding remote dspNode. Operating over long polling
TCP connection, the protocol reliably allows quick exchange of
small data packets to the client and a dspNode instance.
Connections are also automatically re-established by both peers if
dropped due to network connectivity issues. The problem with
Websocket communications is that the signals still need to pass
through an additional WebSocket gateway, adding additional
latency and infrastructure. Ideally, commands are sent directly to
the dspNode.

The RTCDataChannel was chosen as it allows direct
communication between the two peers, leaving a WebSocket for
peer signaling purposes only, without handling the payloads. The
UDP RTCDataChannel can be configured to offer the similar
reliability of WebSockets without the need for an external
gateway during exchanges of data.

3.1.1 Example control signal payload

dspNodeClient.sendCommand({

channel: 5,

param: ‘gain’

value: ‘0.774’,

rampTime: ‘0.1’,

});

3.2 Audio Streaming from dspNode
WebRTC is a low latency UDP connection between multiple
peers, optimized for real-time audio, video and data
communication. This technology is a perfect fit for the proposed
system.

Over the past few years, WebRTC library has gained support
across all modern browsers and devices, with iOS being one of the
last major vendors to join the group of supported browsers in late
2017. Although primarily designed for peer to peer webcam and 6

speech applications, dspNode replaces a peer with a designated
remote rendering engine that acts like a typical client.

With WebRTC now consistently supported across all modern
browsers and devices (which was not the case at the start of the
project), the use of WebRTC is now a viable solution in this
context.

3.2.1 WebRTC library
RTCMulticonnection.js is currently used in the project as it 7

provides a very simple interface for creating WebRTC
connections and handles the required peer signaling over
WebSockets in one simple package. RTCMulticonnection is a
simplified wrapper for the browsers native WebRTC API.

3.2.2 Additional WebRTC audio components
WebRTC offers a complete stack for voice communications. It
includes not only the necessary codecs, but other components
necessary to great user experiences. This includes software-based
acoustic echo cancellation (AEC), automatic gain control (AGC),
noise reduction, noise suppression, and hardware access and
control across multiple platforms. 8

The additional components are all be disabled at both the dspNode
and client ends of the connection as they will interfere with the
integrity of the audio signal. Ideally, the audio rendered on the
dspNode will match the audio delivered to the client, with the
least amount of processing applied in the process. The need for
lossy compression in the transport of the audio stream is a given
due to client connectivity speeds, so any additional client side
processes should be disabled. Additionally, these extra client-side
processes are generally aimed at audio containing speech only.

3.3 WebRTC codecs

Table 1. Codec support for WebRTC API 9

Codec Usage

G.711 Narrowband mono audio, speech, VOIP

DTMF Telephone control signals

VP8 Video optimised

H.264 Video optimised

Opus Fullband stereo audio codec

6 ​https://caniuse.com/#search=webrtc
7 ​http://www.rtcmulticonnection.org/
8 ​https://webrtc.org/faq/#audio
9 ​https://webrtcglossary.com/codec/

3.3.1 Opus audio codec

Opus is a royalty-free audio codec defined by IETF RFC 6176. 10

It supports constant and variable bitrate encoding from 6 kbit/s to
510 kbit/s, frame sizes from 2.5 ms to 60 ms, and various
sampling rates from 8 kHz (with 4 kHz bandwidth) to 48 kHz
(with 20 kHz bandwidth, where the entire hearing range of the
human auditory system can be reproduced). 11

The bitrate of the compressed Opus audio feed will ultimately
determine the amount of lossy compression applied to the audio
signal from source to destination. The frame size will be a large
part of determining the packet delivery latency.

Supporting both variable and constant bit rates, various settings
can be auditioned to find the optimum audio quality vs latency.
Variable bit-rates allow for adaptive streaming, which will adjust
its required bitrates based on network conditions.

Intelligent jitter correction buffers implemented in the browser
mean packet loss and reordering will not have catastrophic effects
on the perceived audio signal.

When initializing a connection with a remote dspNode, the codec
parameters are passed in, defining the bitrate ranges, sampling
rate and encoding/decoding complexity values.

4. LATENCY
The latency experienced between control signals being sent and
the rendered audio being played back on the client device is a
crucial factor to the success of the project.

Simple tests have been written to put assess this value across a
range of devices and network conditions. We must consider the
delay of the control signals from the client, the amount of time
taken to apply the DSP parameters and then finally the time taken
to deliver the audio stream to the listeners’ speaker. All of these
delays are variable and can change over time during the stream.

4.1 Control signal latency
A small test was devised to test the round-trip latency of a typical
control signal from client to server and back to client. The test can
be run by the reader by visiting the link given . 12

The test establishes an RTCDataChannel connection to a
simplified dspNode instance via a publicly accessible signalling
server. The test client sends a control package to the dspNode
over the RTCDataChannel and waits for an echoed reply. The
time between when the packet was sent and received is then
displayed on screen.

The performance of the RTCDataChannel was more than
acceptable and provides the quickest way to send data between
peers. Typically, delays observed were under 10ms.

10 ​http://opus-codec.org
11 ​https://webrtc.org/faq/#what-is-the-vp8-video-codec
12
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTe
sts/rtcDataChannelLatencyTest.js

4.2 Audio signal latency

To reasonably accurately determine the audio latency from the
dspNode instance to the client, a simple test was devised. 13

Although WebRTC debugging tools are available that can give
the reader detailed stats about a connection, a practical real world
end to end test gives a more accurate figure. This test will also
take into consideration the time required to render the audio
stream.

For this test, a dspNode instance is initialised by the dspNode
client library which is then used to establish a connection from the
browser to the dspNode through a gateway server.

A control signal is sent from the client to the dspNode which
loads a test project. A play command is sent from the client which
starts one channel of 440 hz test tone that runs for one minute.
After the minute, the dspNode process terminates.

Using the Web Audio API, the client then scans all received audio
buffers and detects the first non-zero audio sample, which
represents the start of the audio signal received from the server.
The test compares the timestamp of this non-zero value to the
timestamp of the control being sent. The latency is then displayed
on screen. The value is also logged by the dspNode and collected.
A link to the results recorded can be found at the given link 14

This is a very simplified test and only begins to accurately assess
the latency of the system.

4.1.1 Overview
The latencies experienced were surprisingly low, some as low as
below 100ms. The physical location of the dspNode instance and
the client connection has a significant effect on the delays
experienced. Some additional logic should be added to the
gateway to point clients to a physically close dspNode instance (or
at least in terms of internet nodes) based on the geolocation
information of the client’s IP address.

5. DEMONSTRATION APPLICATION
An example application has been created to demonstrate the
advantages afforded by the proposed system and test its audio
rendering performance. The criteria of the application was to
create a multitrack mixer for live sessions to give the audience the
opportunity to create their own unique versions of performances.

For the purpose of the demonstration, the audio rendering was
limited to eight simultaneous channels of pre-recorded audio, with
common mixing console functionality such as volume control,
panning, busses, EQ, dynamic compression, delay and
convolution reverb, summed to a stereo output.

5.1 Client-side control application
The client-side application acts as a simple remote control,
maintaining the state of the mixer controls and using the dspNode
client library to send commands to a remote dspNode. The audio

13
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTe
sts/audioLatencyTest.js
14
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTe
sts/README.md

that is received from the dspNode is passed into an HTML5
Audio element as a javascript blob and played through the
browsers native audio handling.

Each channel has its own individual controls and also controls for
the master buss processing for processes such as global EQ,
limiting and stereo width.

Figure 2. Client side application

The client-side application uses AngularJs , peaks.js and jQuery 15 16

knob . Source code is available on Github 17 18

5.2 dspNode audio rendering application
For this particular example, the dspNode audio rendering engine
has been implemented with Node Webkit . The focus was to shift 19

network and processing power from the client to the dspNode,
testing real world latencies between the two peers.

The audio is fully rendered within NodeWebkit and the rendered
audio stream passed over the WebRTC connection established
with the client.

The combination of Node and NodeWebkit was chosen as a
simple route for demonstration purposes. Experiments with other
more efficient audio rendering processes have taken place,
examples can be seen in the diagrams supplied . These 20

approaches will be discussed more in the conclusion.

6. INFRASTRUCTURE DEPLOYMENT
For the reader’s own performance evaluation, a reservation of five
dspNodes have been setup. This setup is being used for
demonstrations and performance testing.

WebRTC connections cannot establish links between two peers
without a publically accessible signalling server.

WebRTC uses RTCPeerConnection to communicate streaming
data between browsers, but also needs a mechanism to coordinate
communication and to send control messages, a process known as

15 ​https://angularjs.org/
16 ​https://github.com/bbc/peaks.js/
17 ​https://github.com/aterrien/jQuery-Knob
18 https://github.com/dodds-cc/dspNode/tree/master/demo/client
19 ​https://nwjs.io/
20
https://github.com/dodds-cc/dspNode/blob/master/architectures/R
EADME.md

signaling. Signaling methods and protocols are not specified by
WebRTC. For this example, the Socket.io websocket library is 21 22

used.

6.1.1 STUN AND TURN
WebRTC is designed to work peer-to-peer, so users can connect
by the most direct route possible. However, WebRTC is built to
cope with real-world networking: client applications need to
traverse NAT gateways and firewalls, and peer to peer networking
needs fallbacks in case direct connection fails. As part of this
process, the WebRTC APIs use STUN servers to get the IP
address of your computer, and TURN servers to function as relay
servers in case peer-to-peer communication fails . The dspNode 23

example application employs publicly accessible STUN and
TURN servers, hosted by 3rd parties for free.

6.1.2 Demonstration application overview

Figure 3. Demo application architecture

1. ​HTTP​: The client first makes a request for a new dspNode
instance via HTTP to the gateway server.

2. ​HTTP​: The gateway server then starts a dspNode instance on
AWS Fargate, passing it a randomly assigned unique identifier.
When the instance has fully booted, a notification is sent back to
the gateway along with the identifier

3. ​HTTP​: The client then registers with the signaling server over
webrtc, signaling that it is ready for connection.

4​. ​HTTP​: The dspNode makes a call to the signalling server
telling it that it is ready for a client connection.

5. ​RTCDataChannel​: Once the websocket signaling server has
registered both the client and dspNode and established the
simplest route between them, a UDP connection is established
between the two peers. The client sends dspNode control signals
and receives command acknowledgements and status updates
from the dspNode, both in JSON format.

6. ​RTCPeerConnection​: A WebRTC audio connection is then
established from the dspNode to the client based on the codec
settings provided in the clients first request to the gateway server.
This is setup as a one-way link, using the getUserMedia API to
capture audio on the dspNode.

21
https://codelabs.developers.google.com/codelabs/webrtc-web/#0
22 ​https://socket.io/
23
https://codelabs.developers.google.com/codelabs/webrtc-web/#0

7. SCALING
Currently, the dspNode process can be run on any platform
architecture within in an isolated docker container. The process
requires around 500MB RAM, file system access, one vCPU
resource and an outbound internet connection. Each single client
destination device requires one rendering engine on a one to one
ratio.

The docker container can be run anywhere on the internet in
theory, but practically the closer the physical location of the
dspNode to the clients internet connection, the lower the latency
of the control signals and rendered audio will be to the client.

Containers can be run on a variety of 3rd party cloud
infrastructure platforms or run on premise. Recently, cloud
services have begun to emerge that abstract the underlying host
management, providing a simple interface to spin up multiple
simultaneous containers. Amazon Fargate has been used for this
demonstration, but other solutions are available including
open-source options.

8. CONCLUSION
This project has generally validated the concept and potential of
remote audio rendering for web applications. The demonstration
application shows that high quality audio can be streamed from a
remote source with low latency using a client-side control
interface.

The latencies observed are surprisingly low across devices and the
increasing WebRTC support over the last few years has meant the
concept as a means to deliver complex dynamic audio feeds is
plausible. This research is the start of further exploration.

9. FURTHER WORK

The first area to continue exploring is the optimisation of the
rendering process. The demonstration saw the use of NodeWebkit
as a easy to test solution, essentially shifting the Web Audio API
from the browser to a dspNode. Ideally, the dspNode will
implement a lower level native rendering engine. Experiments
with a controllable GStreamer (written in native C) DSP graph
running within the dspNode instance have shown that this is
viable.

Possible uses of dspNode include the working example given, but
could include many other applications. For example, a VR headset
rendering environment could send over only its position matrix to
the dspNode, allowing the server to compute the complex spatial
audio rendering, freeing the headset resources to focus on video
rendering.

Another example could be in collaborative audio creation,
allowing multiple users to collaborate on a shared audio editor
environment running in dspNode in real-time with multiple
simultaneous client connections and control signal feeds.

Expanding the scope of the project to video could be an
interesting route too, particularly in combination with video
rendering libraries like VideoContext.js which are subject to 24

similar client-side bottlenecks.

24 https://github.com/bbc/VideoContext

10. REFERENCES

[1] dspNode, ​Thomas Dodds,​ ​April 2018

https://github.com/dodds-cc/dspNode

[2] CloudOrch: A Portable SoundCard in the Cloud,

Abram Hindle,​ ​June 2014

http://www.nime.org/proceedings/2014/nime2014_541.
pdf

[3] Websockets Streaming Audio,

Scott Stensland,​ ​2014
https://www.npmjs.com/package/websockets-streaming-
audio

[4] Cloud gaming, ​Wikipedia April 2018

https://en.wikipedia.org/wiki/Cloud_gamin

[5] Media formats for HTML Audio and Video,

Mozilla April 2018

https://developer.mozilla.org/en-US/docs/Web/HTML/S
upported_media_formats

[6] Can I Use? ​Alexis Deveria, April 2018
https://caniuse.com/#search=webrtc

[7] RTCMulticonnection, ​Muaz Khan, April 2018
http://www.rtcmulticonnection.org/

[8] WebRTC FAQ, ​Google Chrome, April 2018

https://webrtc.org/faq/#audio

[9] WebRTC Glossary,​ BlogGeek.com, April 2018

https://webrtcglossary.com/codec/

[10] Opus Codec, ​Xiph,org, April 2018
http://opus-codec.org

[11] What is the VP8 Codec, ​Google Chrome, April 2018

https://webrtc.org/faq/#what-is-the-vp8-video-codec

[12] dspNode Control Signal Latency Test, ​Thomas Dodds,
April 2018
https://github.com/dodds-cc/dspNode/blob/master/tests/l
atencyTests/rtcDataChannelLatencyTest.js

[13] dspNode Audio Signal Latency Test,​ Thomas Dodds,

April
https://github.com/dodds-cc/dspNode/blob/master/tests/l
atencyTests/audioLatencyTest.js

[14] dspNode Test summary, ​Thomas Dodds, April 2018
https://github.com/dodds-cc/dspNode/blob/master/tests/l
atencyTests/README.md

[15] Angular.js framework, ​Google, April 2018
https://angularjs.org/

[16] Peaks.js, ​BBC April 2018

https://github.com/bbc/peaks.js/

[17] jQuery knob, ​Antony Terrien, December 2015

https://github.com/aterrien/jQuery-Knob

[18] dspNode Client library, ​Thomas Dodds, April 2018

https://github.com/dodds-cc/dspNode/tree/master/demo/
client

[19] Node Webkit, ​NW.js community April 2018

https://nwjs.io/

[20] dspNode Architecture experiments, ​Thomas Dodds,

April 2018

https://github.com/dodds-cc/dspNode/blob/master/archit
ectures/README.md

[21] Real time communication with WebRTC, ​Google, April

2018

https://codelabs.developers.google.com/codelabs/webrtc
-web

[22] Socket.io open-source javascript library, ​April 2018
https://socket.io

[23] What are STUN and TURN,​ Google, April 2018

https://codelabs.developers.google.com/codelabs/webrtc
-web

[24] VideoContext.js, ​BBC, March 2018

https://github.com/bbc/VideoContext

https://github.com/dodds-cc/dspNode
http://www.nime.org/proceedings/2014/nime2014_541.pdf
http://www.nime.org/proceedings/2014/nime2014_541.pdf
https://www.npmjs.com/package/websockets-streaming-audio
https://www.npmjs.com/package/websockets-streaming-audio
https://en.wikipedia.org/wiki/Cloud_gamin
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats
https://caniuse.com/#search=webrtc
http://www.rtcmulticonnection.org/
https://webrtc.org/faq/#audio
https://webrtcglossary.com/codec/
http://opus-codec.org/
https://webrtc.org/faq/#what-is-the-vp8-video-codec
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTests/rtcDataChannelLatencyTest.js
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTests/rtcDataChannelLatencyTest.js
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTests/audioLatencyTest.js
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTests/audioLatencyTest.js
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTests/README.md
https://github.com/dodds-cc/dspNode/blob/master/tests/latencyTests/README.md
https://angularjs.org/
https://github.com/bbc/peaks.js/
https://github.com/aterrien/jQuery-Knob
https://github.com/dodds-cc/dspNode/tree/master/demo/client
https://github.com/dodds-cc/dspNode/tree/master/demo/client
https://nwjs.io/
https://github.com/dodds-cc/dspNode/blob/master/architectures/README.md
https://github.com/dodds-cc/dspNode/blob/master/architectures/README.md
https://codelabs.developers.google.com/codelabs/webrtc-web/#0
https://codelabs.developers.google.com/codelabs/webrtc-web/#0
https://socket.io/
https://codelabs.developers.google.com/codelabs/webrtc-web/
https://codelabs.developers.google.com/codelabs/webrtc-web/
https://github.com/bbc/VideoContext

