DSP2JS

A C++ framework for the development of in-browser DSPs

Oliver Major
Fraunhofer IS
Am Wolfsmantel 33
91058 Erlangen, Germany

oliver.major@iis.fraunhofer.de

ABSTRACT

We present DSP2JS, a new framework for the develop-
ment of audio signal processors for web platforms using Em-
scripten and the WebAudio API. In particular, the goal is to
abstract common functionality in a configurable layer that
manages the communication between a JavaScript applica-
tion and DSP code written in C or C++. The framework
includes functionality for the creation, connection and man-
agement of processing units, runtime profiling, buffer man-
agement, buffer conversion and a configurable build system.

The proposed three-step development of a signal proces-
sor with DSP2JS allows for external libraries to be included,
making it possible to port existing code to the framework.
The generated artifacts can then be used in a web page
and invoked via an interface similar to native WebAudio-
Nodes. The optional omission of WebAudio bindings via a
bare-build mode potentially opens up the core framework to
further DSP applications, even outside of the audio domain.

We examine the multilayered architecture of the core
framework and the build system, also discussing design and
implemetation decisions.

1. INTRODUCTION

We present a novel method to develop and port Audio
DSP code to the web. The DSP2JS framework addresses
issues of bridging audio processing, based on C or C++ to
browser-based platforms with efficient buffer management
and provides a familiar interface for JavaScript developers
using the WebAudio API. It uses the Emscripten compiler to
transpile the code to WebAssembly or asm.js. Furthermore,
it provides JavaScript binding code for WebAudio using the
AudioWorklet specification [2] to enable web developers to
integrate DSP2JS-based packages into their existing or new
projects.

DSP2JS is developed and maintained as an internal tool
at Fraunhofer IIS, although discussions to open-source it
are ongoing. Since a significant amount of our software is
written in C, the framework has a main focus on porting
existing libraries. To facilitate this, one of the design goals
of the project is to be a functionally rich layer between the

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2018, September 19-21, 2018, Berlin, Germany.

(© 2018 Copyright held by the owner/author(s).

JavaScript application and the DSP code and bridge the
gap between these two parties in a largely opaque manner
with as little code as possible. It uses object-oriented design
principles to achieve a relatively high abstraction level, being
configurable and flexible. As such, it performs the most
general tasks like buffer management, conversions between
fixed-point and floating-point representations and profiling,
which are independent of the application logic of the DSP.

This distinguishes DSP2JS from the currently available
Web Audio Modules [3]|. These allow the user to define call-
backs for most important events using a C API, but do not
provide any functionality on their own. While developers
using Web Audio Modules get the most essential, yet flex-
ible framework and have to define their own binding code
and build process, DSP2JS aims to be a more abstract, but
still performant alternative.

Figure[[]shows a general overview of the framework and its
elements. The user interacts with a web page or JavaScript
application, which can prompt the global DSP2JS object
to spawn new AudioWorkletNodes representing processing
units of a specific kind. They can then be inserted into an
audio graph like any other WebAudio Node.

For every Node, the JavaScript runtime spawns a cor-
responding AudioWorkletProcessor in the rendering thread.
This object has access to the compiled and instantiated
DSP2JS Module, which it uses to create an internal repre-
sentation of the processor inside WebAssembly. The Audio-
WorkletProcessor forwards global parameters (e.g. sample-
rate and data types), local parameters (e.g. channel count
and profiler settings) and user-defined parameters (e.g. the
gain in a custom gain node) to the WebAssembly object.
When it is called to process an audio buffer, it copies the
buffer into the WebAssembly memory and calls the frame-
work’s process function.

The DSP2JS core is the hub of the framework. It is imple-
mented in C++ and intercepts calls from the AudioWorklet-
Processor to WebAssembly to perform common tasks like
profiling and buffer conversion before forwarding calls to the
underlying processor. Custom calls are left unaltered. The
processor then only needs to perform the specific DSP op-
erations. If an external library can be compiled to Web-
Assembly, it is also possible to link it in and call it from the
processor class.

In this paper we describe the framework from an imple-
menter’s point of view in Section [J] We dive into more
technical details in Section [3] before discussing some of the
decisions made in the project in Section [4

User

JavaScript userspace

A 4

HTML/JavaScript
Application

DSP2JS
DSP2JS core

Web Audio bindings

A 4

Audio Worklet
(Web Audio API)

A 4

DSP2JS Module
(WebAssembly)

Custom
properties

A 4

Processor_base
(DSP2JS core)

A

C++ userspace

A

User defined C++
Processor

A 4

External C++

Libraries

Figure 1: Overview of the DSP2JS framework

2. DEVELOPMENT CYCLE

The DSP2JS framework aids in the development of C and
C++ based Audio DSP code. A DSP developer writes some
application logic and calls DSP2JS’s build system to gener-
ate two deliverable JavaScript files. A web developer can
then include the artifacts to have the DSP functionality
available as a WebAudio Node. In this section we describe
the process of working with DSP2JS-based packages from
these two perspectives.

2.1 Web developer

We illustrate the web developer’s point of view with an
exemplified gain reduction plugin in Listing
1 const GRN = DSP2JS.GainRedNode;

s async function runDemo () {
A let actx = new AudioContext () ;
await GRN.registerContext (actx);

new OscillatorNode (actx);
new GRN(actx);

7 let src
8 let proc

o src.connect (proc)
! .connect (actx.destination);
2 src.start () ;

. proc.activateProfiler ();
proc.reduction = 2;

s runDemo () ;

Listing 1: GainRed.html

The web developer is given a package consisting of two
JavaScript files. GainRedNode.js has to be loaded on a
website using a script tag and now gives the developer ac-
cess to the global DSP2JS object. This object contains a
field GainRedNode which has to be registered with an Audio-
Context, as seen in line 5. Optionally, the developer can
pass the path to the second file, GainRedProc.js, if it is
not in the root folder. Afterwards, a Node can be created
and connected like a regular AudioNode, as seen in lines 8
and 10. The node also provides access to DSP2JS functions
and parameters (such as activateProfiler in line 14) and
user-defined functions and parameters (such as reduction
in line 15).

2.2 DSP developer

The development process for the DSP developer to create
the artifacts consists of three steps, which are again exem-
plified with the gain reduction plugin.

The first step is to create the C4++ processor like in List-
ing The developer has to include the file DSP2JS.h and
implement a derived class from Processor_base, as seen in
line 5. This class has to provide a constructor which config-
ures the base class with buffer properties such as data type
and interleaving mode (line 9). The implementation has to
override the process method, taking two arguments of type
BufferProxy (line 15), casting them to the specified type
(lines 16 - 17) and performing the DSP operations (line 20).
The method is declared const to enforce public parameters
not to change during the call. Internal state that is altered
in the processing has to be marked mutable. At any time,
the class can ask the framework for its internal parameters,
such as buffer length, types and channel counts (line 18).

i #include <emscripten/bind.h>
> #include "DSP2JS.h"

; using namespace DSP2JS;

+

s class GainRed

6 short red = 1;

public Processor_base {

¢ public:

o explicit GainRed ()
10

11 void setRed(short gr) {red = gr;}
12 short getRed() const {return red;}
13

14 protected:

Processor_base(DataType::INT16, InterleaveMode::Sequential) {}

15 void process (BufferProxy inProxy, BufferProxy outProxy) const override {

16 auto ib = static_cast<short #*>(inProxy);
17 auto ob = static_cast<short #*>(outProxy);
18 auto L = getBufferLength();

19

20 for (int i = 0; i1 < L; ++i) {ob[i] =
21 }

22 };

:wEMSCRIPTEN_BINDINGS(GainRed) {

ib[i] / red;}

25 emscripten::class_<GainRed, emscripten::base<Processor_base>>("GainRed")

26 .constructor <>()

27 .property("reduction", &GainRed::getRed,

&4GainRed::setRed);

Listing 2: GainRed.cpp

2 "name": "GainRed",
3 "members": [
1

{
5 "name": "reduction",
6 Iltypell: Ildatall’
7 "init": 1
8 }
9] >
10 "optiomns": {
11 "number0fInputs": 1,
12 "number0fOutputs": 1,
13 "channelCountMode": "max",
14 "channelCount": 1
15 }
6}

Listing 3: GainRed.json

The class can also hold custom data such as the gain reduc-
tion divisor red (line 6). Finally, the class and all parameters
that shall be visible to the web developer need to be exposed
by Emscripten’s binding mechanism, as shown in lines 24 -
28.

The second step is the description of the gain reduction
node as shown in Listing [3] Here, the DSP developer de-
fines the public interface of the WebAudio Node as seen by
the web developer. For this step, a .json file has to be pro-
vided with a name field, a members array and an options
object with numberOflnputs, numberOfOutputs, channel-
CountMode and channelCount fields.

In case of external dependencies, the developer needs to
compile all external libraries with Emscripten as preparation
for the final build step. Listing [4] shows an example Make-
file with the necessary configurations: the project name,
DSP2JS root path, source path and optional paths for in-
cludes, external libraries and build artifacts. At the end, the
developer includes Makefile.base from the DSP2JS folder.
Running make will then generate the deliverable artifacts.

1 PROJECT_NAME=GainRed
> DSP2JS_R0O0T=../DSP2JS

. SRC_DIR=./src

s INCLUDE_PATHS=

¢ EXT_LIBS=

7 BUILD_DIR=./dist

9 include $(DSP2JS_ROOT)/Makefile.base

Listing 4: Makefile

3. IMPLEMENTATION

In this section, we take a closer look at the technical de-
tails of how DSP2JS is implemented. A class diagram show-
ing the general architecture of the framework can be seen in
Figure [2| which will be described in the following.

3.1 DSP2JS core

At the lowest abstraction level and on the bottom right
in the diagram, we find the Data<T> class template, which
is used to represent a value in memory. The template pa-
rameter T is of enum type DataType and can be either of
INT8, INT16, INT32, FLOAT32 or FLOAT64. Data<T> is a thin
wrapper around a corresponding base type such as short or
float with additional functions for casting one data type to
another under consideration of scaling and clamping of the
values, thus providing a notion of an audio sample.

The Buffer<T> class template is the abstraction of an
array of Data<T> values combined with metadata such as
length, channel count and its interleaving mode. It also pro-
vides a mechanism for lazy allocation of the memory buffer
to hold its values and to generate memory views for internal
(C++) and external (JavaScript) use.

It derives from the Buffer_base class in what we refer to
as the base-generic-pattern in this paper: an enum describes
all the variations of the concept we want to implement, such

ipt userspace

DSP2JS

HTML/JavaScript
Application
v
AudioWorkletNode
Class of handle objects for the web
developer to insert DSP2JS processors
E, into an audio graph.
5 k]
3 £
o S
2 MessagePort =
3 v o
2 k1
a DSP2JS AudioWorkletProcessor 2
]
s The WebAssembly module as generated Class that contains the processing logic
by Emscripten. Is located in the [€——Call WASM for the audio data. Dispatches messages
AudioWorkletGlobalScope and exposes from its MessagePort object and forwards
the needed C++ classes. them to the DSP2JS processor.
Construct
Destruct
process()
getBuffer()
Profiler_base «enum»
ProfilerType
Interface and factory class
for profilers, specialized b N N
pProfiIerTyge enum. Y Profiler<ProfilerType>
v
Processor_base I<— Specialized implementation.
The central entry point for the DSP2JS core.
Manages JavaScript to C++ communication,
parameter negotiation and dispatching of
the user defined processor functionality.
© BufferManager BufferConverter_base «enum»
8 [InterleaveMode
P - "References ™™ Management class for a set Interface and factory class
] P H E of buffers and converters for buffer converters, -
8 asses | [between them. specialized by buffers. BufferConverter<Ti, To>
a + E I<— Specialized implementation.
BufferProxy &I
' Converts Uses
Proxy for a buffer. : interleaves
Cust The user casts this H v
ustom Implements | to the specified internal H
properties process() data type. ' Buffer_base l;:t,;l%n;e Data<T>
E Interface and factory class Abstraction for floating or
H for buffers, specialized by fixed point data. Implements
1 DataType enum. Buffer<T> clamping and conversion to
Works on —— Specialized implementation. other data types.
| ?
D Creates ™"~ """""TTTTTTTTIIS
v
3 Processor
g_
o User defined processor class with
b E : ned p . External C++
@ mscripten bindings for custom properties Libraries
: and functions. Overrides Processor_base's
5 process method to process audio data.

Figure 2: Detailed class diagram

as the data types in this particular case. The generic class is
a class template which uses the enum for its specializations.
It implements the concrete behavior we want to achieve, for
example Buffer<T> for a specific data type T. It publicly de-
rives from the base class, which is an abstract class defining
the interface for its subclasses. Furthermore, it implements
a factory method to generate subclass instances based on a
parameter of the enum type. The user of the pattern only
knows about this base class and invokes all behavior through
it. Since all specializations of the generic class can be gen-
erated by the factory method, explicit instantiations will be
placed in the compilation unit where the factory method is
defined. Additionally, since the implementation of the sub-
classes uses generics, they can be optimized efficiently, while
still being hidden behind a non-generic abstract interface,
which works well with Emscripten’s binding mechanism.

The same pattern is used for the BufferConverter classes:
we define a set of functors with the abstract interface
BufferConverter_base and specializations implementing
operator() depending on the buffer types, the interleav-
ing modes and the output buffer being identical or different
from the input buffer. The specialization is chosen in the
factory method, so the converters can be called efficiently
without additional runtime checks.

All of the explained behavior for data abstraction is en-
capsulated in the BufferManager class. It manages a set of
four buffers, one for each combination of input/output and
internal/external buffers. The external buffers represent the
buffers used by the JavaScript code to pass inputs in and
get outputs out. Similarly, the internal buffers represent the
buffers used in C4++. To bridge between the internal and ex-
ternal buffers, the buffer manager uses two converters: one
to convert the input data from its external to the internal
representation and one to convert the internal representation
of the output back to the external representation.

Another DSP2JS core functionality is profiling, imple-
mented by profiler classes using the base-generic-pattern.
We provide a runtime profiler for short-term and average
load calculation and a dummy profiler in case no profil-
ing is needed. The profiler can be chosen by passing a
ProfilerType to the factory method, which can be either
RUNTIME or NONE. The interface has start and stop methods
using Emscripten’s timing methods and a getData method
for the extraction of the profile.

When asking a generic Buffer<T> class for an internal
representation, it creates an object of the BufferProxy class,
which is then passed to the DSP code’s process function.
A buffer proxy object references the buffer that created it,
is non-copyable and can be cast to the base type of the
referenced buffer. It does two checks: the cast has to be
performed to the internal base type only and the destructor
checks if a cast was performed at all. It is thus mandatory for
the DSP programmer to take the two Buf ferProxy objects in
the process function and cast them to the correct base type,
otherwise the proxy would throw an error. Additionally, the
buffer proxies help to hide the buffer classes, which should
be used in the DSP2JS core only.

Lastly, the general interface of the core is defined by the
Processor_base class. The DSP developer implements the
processor deriving from this class and passes the internal
buffer properties through the superclass constructor. The
C++ interface is realized by the template method pattern,
which is used to intercept calls to the DSP and inject behav-

ior such as profiling and buffer conversion, as well as data
such as the internal buffer views via BufferProxy objects
into the calls. The class also exposes setters for external pa-
rameters, accessors for external buffers and a process func-
tion to the JavaScript code. It can be called by JavaScript
through the WebAssembly module.

The Processor_base class manages all communication
between the DSP’s C++ code and the JavaScript’s Web-
Assembly module. In the following section the calling con-
ventions and usage is described from the JavaScript view.

3.2 WebAudio bindings

After the DSP2JS core is compiled into a static library,
it gets linked to the DSP code via the Emscripten linker.
This is done by the framework’s Makefile.base, which has to
be included in the DSP developer’s Makefile. Depending on
the optional BARE_BUILD flag, the framework can generate 3
types of output.

If BARE_BUILD mode is set to 2, DSP2JS links the DSP
code, external libraries and the DSP2JS library into a Web-
Assembly file using Emscripten’s SIDE_MODULE option. This
can be used to obtain a maximum of control over the com-
pilation and instantiation of the DSP code on a web page
at the cost of having to implement all loading and binding
code manually.

If BARE_BUILD mode is set to 1, Emscripten generates a
JavaScript file in addition to the WebAssembly file. This
file contains a minimal amount of wrapper code as gener-
ated by Emscripten with the option MODULARIZE_INSTANCE.
The wrapper code asynchronously loads the WASM mod-
ule, compiles and instantiates it, but does not create Web-
Audio bindings. This mode is suited if you want to use the
DSP with your own WebAudio binding code or without the
WebAudio API, possibly for testing or in non-audio related
domains.

If BARE_BUILD mode is set to 0 or unset, the frame-
work generates two JavaScript files, one containing an
AudioWorkletNode and one containing the AudioWorklet-
Processor with the respective names xxxNode.js and
xxxProc.js.

The processor file is generated by Emscripten us-
ing the options MODULARIZE_INSTANCE, SINGLE_FILE and
BINARYEN_ASYNC_COMPILATION=0. It is linked with a pre.js
and a post.js file provided by the DSP2JS framework, which
register an AudioWorkletProcessor and have access to the
modularized instance of the DSP in the AudioWorklet-
GlobalScope. The file can directly be loaded by the Audio-
Worklet interface via addModule, which compiles and instan-
tiates the WebAssembly module in the rendering thread.
This has to be done only once, optimally at program startup,
because new DSP will be instantiated from the same WASM
instance using Emscripten’s binding mechanism. The pro-
cessor file also sets the correct external parameters inside
Processor_base during loading.

The node file is generated from the node description in the
.json file provided by the DSP developer. Besides the node
name and the AudioWorkletNodeOptions, it defines a set of
members, which can either be functions or data attributes.
The file contains a class derived from AudioWorkletNode
which sends events to the processor via its MessagePort ob-
ject corresponding to the members. For the data members it
additionally holds the last known values as sent back by the
processor and makes them accessible with a getter method.

Finally, the node offers a static method for the registration
of the processor at a BaseAudioContext.

In conclusion, the WebAssembly module is first used to set
external parameters before we can use it to spawn processing
units. They expose DSP2JS and DSP-specific functionality
and can be invoked by a process function. Based on the
BARE_BUILD setting, the framework assists the web developer
with these tasks to a certain degree.

4. DISCUSSION

This section illustrates some of the decisions made in the
development of the framework.

An important decision was the use of Emscripten’s embind
mechanism, as opposed to cwrap, ccall and direct calls. The
measured runtime for 10 million function calls to an empty
C++ function through the Emscripten-generated JavaScript
interface can be seen in Table[Il The results show that ccall
is unreasonably slow and is therefore not suitable for the
given task. Direct calls and cwrap show the best perfor-
mance, while embind is slower by a factor of approximately
2. Since embind can express more advanced C++ concepts
like classes in JavaScript, and the performance impact is
negligible in the presence of actual application logi(ﬂ the
more maintainable and flexible embind method is preferred
in DSP2JS.

Method | Direct call | ccall | cwrap | embind
Time[ms] 70 1850 80 155

Table 1: Comparison of Emscripten binding meth-
ods (10M calls, WASM, -03)

Another implementation detail is the use of lazy buffers
as a countermeasure to manual activation and deactivation
of buffers. Since the DSP2JS core should be able to first
collect all neccessary metadata and then allocate the mem-
ory, the most sensible option was to implement them in a
lazy fashion, allocating memory only if the metadata has
changed and only when a buffer representation is requested.
This takes the responsibility for explicit memory manage-
ment away from both the JavaScript binding code and the
DSP code and moves it to a more appropriate place.

Finally, a major design choice was to compile and instan-
tiate the WebAssembly module on the rendering thread.
A positive aspect is that it is easy to implement, manage
and deploy. The WebAssembly code is written into the pro-
cessor’s JavaScript file directly via the SINGLE_FILE option
and does not have to be hosted and transmitted separately.
Since the AudioWorkletGlobalScope does not permit asyn-
chronous requests, the BINARYEN_ASYNC_COMPILATION op-
tion is deactivated. The code in post.js can then always
assume that the WebAssembly instance already exists.

The architecture of DSP2JS conforms to this behavior by
being able to spawn several processor instances using only
one WebAssembly instance. The JavaScript runtime com-
piles and instantiates the module once when addModule is

'For a buffer length of 128 samples and a sample rate of
48 kHz we expect 48000/128 = 375 process function calls,
which should result in less than 1000 total function calls per
second, considering other properties might usually have a
polling rate of 60 Hz. This is negligible compared to 155 ms
overhead for 10M function calls.

called and before the AudioWorkletProcessor class is regis-
tered. This should optimally be done at program startup to
avoid pauses and audio glitches at runtime.

A downside of this approach is that — at the time of writ-
ing — Emscripten’s optimizer only supports ECMAScript 5
syntax, while the definition of an AudioWorkletProcessor is
based on ECMAScript 6 class inheritance. It is thus cur-
rently not possible to build DSP2JS-based plugins with an
optimization level higher than -01. The support for ECMA-
Script 6 syntax in the Emscripten optimizer is still to be
implemented [1].

As an additional fallback, the above issues can be avoided
by using the BARE_BUILD mode with custom binding code.

5. CONCLUSION

We presented the DSP2JS framework, a flexible and con-
figurable framework that takes responsibility for common
tasks from the developers and performs them efficiently and
in an opaque manner. It lets DSP developers implement or
port DSP code to web platforms and generates artifacts us-
able by a web developer. The development process can be
broken down into three steps:

1. writing the DSP code,
2. describing the JavaScript interface,
3. configuring the build.

In the last step it is defined what kind of bindings are gen-
erated. Depending on the BARE_BUILD mode, the web devel-
oper either gets binding code that can be integrated into the
WebAudio API like native nodes, or a bare WebAssembly
file for more control and potentially other applications.

We described the core framework in detail, which performs
buffer management, conversion and profiling and hides the
efficient internals behind the Processor_base class. The
framework makes extensive use of the base-generic-pattern
to yield performant generic implementations hidden behind
an abstract and non-generic interface.

Finally, we discussed some of the design decisions concern-
ing the framework.

6. ACKNOWLEDGMENTS

Thanks go to Simon Schwir who was of great help at
putting our thoughts to paper, raising the quality bar by a
magnitude. We also thank Oliver Scheuregger and Nikita
Goddard for the solid groundwork laid for this project. Fur-
ther thanks go to Jan Plogsties and Dr. Nikolaus Farber for
their initiative to represent the paper and project. Finally,
we thank the proofreaders of this paper.

7. REFERENCES

[1] [Feature Request] ES6 support for the uglifier.
https://github.com/kripken/emscripten/issues/6041.
Accessed: 2018-04-12.

[2] Web Audio APT.
https://webaudio.github.io/web-audio-api/. Accessed:
2018-04-12.

[3] Web Audio Modules | community site.
https://www.webaudiomodules.org/. Accessed:
2018-04-12.

https://github.com/kripken/emscripten/issues/6041
https://webaudio.github.io/web-audio-api/
https://www.webaudiomodules.org/

	Introduction
	Development cycle
	Web developer
	DSP developer

	Implementation
	DSP2JS core
	WebAudio bindings

	Discussion
	Conclusion
	Acknowledgments
	References

