
A User-Adaptive Automated DJ Web App with
Object-Based Audio and Crowd-Sourced Decision Trees

Florian Thalmann
Centre for Digital Music,

Queen Mary University of
London

f.thalmann@qmul.ac.uk

Lucas Thompson
Centre for Digital Music,

Queen Mary University of
London

lucas.thompson@qmul.ac.uk

Mark Sandler
Centre for Digital Music,

Queen Mary University of
London

mark.sandler@qmul.ac.uk

ABSTRACT
We describe the concepts behind a web-based minimal-UI
DJ system that adapts to the user’s preference via sim-
ple interactive decisions and feedback on taste. Starting
from a preset decision tree modeled on common DJ prac-
tice, the system can gradually learn a more customised and
user-specific tree. At the core of the system are structural
representations of the musical content based on semantic au-
dio technologies and inferred from features extracted from
the audio directly in the browser. These representations are
gradually combined into a representation of the mix which
could then be saved and shared with other users. We show
how different types of transitions can be modeled using sim-
ple musical constraints. Potential applications of the system
include crowd-sourced data collection, both on temporally
aligned playlisting and musical preference.

1. INTRODUCTION
The Web Audio API allows us to incorporate increasingly

sophisticated audio functionality into web applications and
directly use the client’s local resources for audio processing.
While decreasing the need for server-side processing, this
also enables more personalised and immediate user experi-
ences. Delivering such experiences directly in the browser
instead of as desktop applications has several advantages.
They are immediately accessible by any user and from any
device, due to the increased platform independence and the
fact that no installation process is needed. Furthermore,
the usage data necessary for such a customised and gradu-
ally improving experience can directly be gathered by the
same application in real time, due to all user actions being
carried out online. Finally, changes to the experience can
directly be pushed to the user from the server, even while
the application is being used. These kinds of applications
have a significant potential for crowd-sourced data collection
for audio and music research.

The current paper discusses the prototype of such an ap-
plication, a web-based automated DJ software with the pur-
pose of gaining some insight into music listening behavior.
In particular, the goal is to investigate what kinds of transi-

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2018, September 19–21, 2018, Berlin, Germany.

c© 2018 Copyright held by the owner/author(s).

tions between any given arbitrary pair of successive musical
pieces are generally favored by music listeners. The app is
able to generate a number of standard transition types in-
spired by DJ practice and uses a customisable decision tree
to determine the best type and configuration of transition
for a user in a situation. All decisions are informed by high-
level descriptors which are inferred from audio features di-
rectly extracted in the browser using the piper framework.1

The internal representation of the music, mix, and transi-
tions, in turn, are modeled using dynamic music objects.2

The app features a minimal user interface that lets users
drag and drop songs from their local private collection onto
the browser and rate the decisions taken by the app with a
simple star rating. An API collects all the high-level descrip-
tors, decisions, and ratings, which can then be used to learn
a personalised or improved decision tree, as well as to study
differences in musical preference. With its minimal user in-
terface, the app is aimed at amateur music listeners rather
than professional DJs and its automatic mixing functional-
ity can be decoupled and embedded into other music-based
and potentially less or more interactive websites.

After a brief section on related work and DJ practice, we
describe how a basic decision process can be derived for a
given set of high-level descriptors which can be inferred from
audio features. We also explain what kinds of data we col-
lect during a session in order to learn customised decision
trees. Then, we describe how mixes and transitions can be
modeled as multi-hierarchical structures with constraints on
their parameters. Finally, we conclude the paper with some
details about the implementation and a preliminary exper-
iment we used to assess the transition types and a sample
decision process.

2. RELATED WORK
Within the field of Music Information Retrieval (MIR),

there has been extensive work on music recommendation
and the closely related topic of automatic playlist genera-
tion. In [3], a review of the playlist generation literature, it
is highlighted that many approaches favour similar sounding
tracks, resulting in rather homogeneous mixes. Similarly,
the majority of proposed automatic DJ systems focus on
transitioning patterns well-suited for homogenous playlists
[14]. Most systems focus on simply beatmatching songs and
linear volume crossfading between them [8, 6], with very
slow tempo ramps [11, 7], and some added EQ or filter-

1https://github.com/piper-audio
2https://github.com/dynamic-music/dymo-core

https://github.com/piper-audio
https://github.com/dynamic-music/dymo-core


ing techniques [4, 14]. Many systems also attempt to find
optimal transition points, mostly based on local rhythmic
or harmonic compatibility [4, 8, 11, 6], whereas only few
consider genre-specific higher-level segmentation or areas of
vocal activity [14].

In actual DJ practice, however, more diverse mixes and a
greater variety of transition types are common devices for
adding musical interest or an element of surprise in order to
keep the crowd engaged. Also, DJs naturally have their own
style and signature techniques, such as quick song switch-
ing, fast tempo ramps, or juxtapositions of multiple songs,
especially since the emergence of digital technology. Few
projects have attempted to address these varieties. In [6],
a binary rating-based personalisation option is provided to
circumvent mix homogeneity, allowing the system to adapt
to the users preference for particular mixing of tracks. How-
ever, the user ratings simply override the similarity ratings
predefined by the system. In the commercial app space,
Serato’s Pyro3 offers similar functionality, incorporating a
number of transition types for mixing between songs with
varying levels of compatibility. Due to allowing tracks from
streaming services such as Spotify, transition points are of-
ten constrained to the start / end points of tracks or from
the currently playing point to the start of the next cued
track. Recent work from Spotify [2] frames playlist sequenc-
ing as a DJ mix, and uses aggregate user data on play-head
scrubbing behaviour to find interesting transition points, in-
corporating beat detection and time-stretching of individual
beats to render transitions with over a ramping tempo, grad-
ually beat-matching the tracks.

For the reasons outlined above, in this paper, we focus
on including a greater number of transition types, as well
as song successions of varying compatibility, which, at the
potential expense of stylistic consistency and robustness, en-
ables increased user customisability. However, despite being
central to the practice, in the context of this paper we omit
the detection of optimal cue points as the system is designed
to transition as soon as possible after a user drops a song,
which is particularly useful in the experimental setup de-
scribed later on.

3. DJING AS A DECISION PROCESS
Traditionally, a pair of turn-tables for playing vinyl

records, and a mixer for blending the outputs of the two
playing records, are the basic tools used by a DJ. The task
of mixing one track into another usually occurs over some
time window, and can utilise temporal alignment, effects,
and processing techniques for modifying aspects of either
track. We use the terms current and cued to refer to the
track being transitioned from and to, respectively. More
recently, software applications make the realtime manipula-
tion of tracks easier, as well as the process of cueing tracks,
and executing more complex.

For the purposes of creating an application for mixing
tracks, it is necessary to model fundamental techniques used
by DJs to blend a variety of tracks into a continuous stream.
In the first instance, we focus only on a small set of basic
transition techniques commonly used when performing, and
present in commercial DJ software, which cover a wide range
of mixing scenarios:

3https://seratopyro.com

 both regular beats?

tempo ratio close to 1?

harmonically similar?

tempo ratio close
to integer?

beatmatch xfade

N

1:n beatmatch xfade

power down

Y

Y

N

YN

N Y

echo freeze

Figure 1: An example of a simple decision tree for
four binary (yes/no) features and four transition
types.

• slam / cut / switching - transition immediately, usually
on the downbeat of the cued track

• cross-fade - smoothly fade-out the current track and
fade-in the cued track

• beat-match - adjust the playback rate of the cued track
for the beats to be synchronous

• echo-out / echo-freeze - apply an echo effect to the
current track and stop it, creating a wash as the cued
track comes in

• power-down - the record slows down drastically in a
short time, resulting in a distinctive downward pitch
slope

These can be framed as the primitives for blending tracks,
or the basic units of composition for more complex transi-
tions. As previously stated, these are typically used along-
side some signal processing across time to achieve more so-
phisticated transitions. In the context of creating an au-
tomatic system, these can be combined with feature ex-
traction for deriving harmonic and rhythmic information
from the current and cued track, to create more musical
transitions, such as echo-out-and-drop-on-the-one (first beat
of next track, perhaps at a harmonically compatible sec-
tion), and using metrical information and time-stretching or
changing playback rate, beat-matched cross-fading can be
achieved.

3.1 Modeling a Basic Decision Tree
Based on these observations we decided to formalise what

DJs do as a simple decision tree, which the application uses
to decide on how to perform a transition for a given pair
of successive musical pieces. For the tree to be intuitively
understandable to humans, we devised a set of high-level
features that correspond to simple musical questions that
DJs may ask when selecting a next song as well as choosing a
way to transition to that song. Each parent node in the tree
corresponds to such a question whereas the outgoing edges
correspond to the available set of answers. Finally, the leaf
nodes correspond to chosen transition types and potential
configuration parameters. Figure 1 shows an simple example
of such a tree.

https://seratopyro.com


Descriptors

Type Individual Comparative

Temporal tempo t tempo ratio tr
tempo multiple tm

regularity r regularity ratio rr

Dynamic loudness l loudness ratio lr
dynamicity d dynamicity ratio dr

Harmonic key k key distance kd

Table 1: A sample set of descriptors inspired by DJ
practice.

In order to ensure that the system is flexible and open
ended, we decided to allow for both the set of available tran-
sitions with their parameters, and the set of features used
for the decisions to be extensible and custom-defined. Simi-
larly, the corresponding decision tree is replaceable and can
involve decisions based on both qualitative and quantitative
features, e.g. if the cued track has a tempo > 130, do this.
The following sections describe the initial sets of features
and transitions we chose for the application prototype.

3.2 Descriptors Inferred from Audio Features
To simplify the investigative study as well as the initial

learning process, we devised a limited number of high-level
features or descriptors. Each decision feature can be de-
rived in a simple way from a set of standard audio features
available in many MIR libraries. We calculate each feature
for the individual songs in a succession, as well as compara-
tively. The members of the first class describe aspects of an
individual track, whereas the ones of the latter two compare
two tracks. Local comparative features describe a temporal
compatibility of two tracks, e.g. the onsets of the harmoni-
cally most similar parts. Table 1 shows a compilation of the
initial set of features chosen for the prototype. A similar set
of features was for example chosen in [10], where listeners’
preference for simple successions of songs was measured.

All temporal descriptors here can be derived from the out-
put of a beat detector, which consists in the beat durations bi
for a given track. t = 60/mean(bi) (see table for names and
variable names) and r = var(bi). tr, rr are simply derived
from the respective values for t, r of the cued song divided
by the ones for the current song, and tm = tr mod 1. The
dynamic descriptors are calculated analogously, with the in-
put being a vector of loudness values lj for the duration of
a track, obtained from a corresponding feature extractor.
l = mean(lj) and d = var(lj), whereas lr, dr are obtained
as above. k ∈ {0, . . . , 11} can be obtained directly from a
key feature extractor, or be calculated as the mode of a tem-
poral sequence of key values. kd is the directed distance on
the circle of fifths from the first to the second key.

3.3 Learning a Custom Transition Preference
The app prototype contains a basic decision tree as de-

scribed above, which is used in the initial data collection
phase. However, already with relatively little data for a
given user or for the entirety of users, the system will be
able to learn a customised or improved decision tree. In this
section, we describe the nature of the data collected and how

it can be used to learn different aspects of the system.
For every new song dropped onto the app and the sub-

sequently generated transition, the user is able to give a
numerical rating (currently 1-5 stars). These ratings, along
with the descriptors and the decision taken, are forwarded to
a specially devised API and stored in a database for further
use. Each record thus has the following structure:

user id, rating, descriptors, process, transition, params

process is the decision process used in the particular case,
which can currently be random or informed by the decision
tree (see Section 6 below), transition is the chosen tran-
sition type (which may include custom ones), and params
is an array values chosen for the parameters of the chosen
transition, e.g. duration, offset, or effect level (see below).

Once enough training data has been collected for a user,
the system queries the API to obtain the data records and
learns a user-specific tree using the CART algorithm4. The
system currently simply selects all well-rated records (4-5
stars) and devises the transition types as supervisory classes
and the descriptors as training input objects.

In addition to the decision tree, in future work, the sys-
tem will also be able to learn, via linear regression, optimal
parameter values for each of the transition types, given a
specific feature.

4. REPRESENTING THE MUSIC, MIXES
AND TRANSITIONS

We use the Dynamic Music Objects format [12] for the
definition and playback of all involved musical structures.
It consists of a semantic web based format for the represen-
tation of constrained multi-hierarchical musical structures.
Each object has a certain type, can be annotated with fea-
tures and parameters, and can have a number of parts, which
are again objects following the same definition. Every ob-
ject can also have multiple parents, which lets us to define
useful structures. The types define the way an object and
its parts are navigated when played back, e.g. as a sequence,
simultaneously, at random, permuted, and so on.

For the present purpose, the format allows us to repre-
sent temporally segmented audio files hierarchically and au-
tomatically annotate the segments with any available au-
dio features. Via a simplified programming interface, these
structures are converted into semantic web triples and stored
in an in-browser triple store which can then be queried
throughout the decision and playback process. For exam-
ple, when calculating the higher-level descriptors described
above we can simply query for feature values at a musical
level of interest, such as bars or beats. These annotated
values can also be used when setting up specific transitions
which depend on local feature values, e.g. when defining
a ramp between the tempos of the current and the cued
songs, as explained below. The format allows us to easily
model various transition techniques by defining constraints
between parts of the musical structure, as simple logical ex-
pressions. At runtime, when triggered, these constraints are
then automatically asserted by the dymo-core library.

4.1 Mixes as Multihierarchical Structures
Musical pieces are commonly viewed as a hierarchical or

even multi-hierarchical structures with their sections, peri-

4https://github.com/mljs/decision-tree-cart

https://github.com/mljs/decision-tree-cart


s2

m

t2t1

s1

Figure 2: A simplified representation of a sample
mix m from one piece s1 to the next s2, where the
mix features bars from both pieces as well as com-
bined transition parts t1, t2.

ods, phrases, slurs, bars, beats, and onsets or events being
examples of hierarchical levels, which may be conflicting and
thus multiply hierarchical. For our purpose it suffices to
model a few of these levels, depending on the set of features
chosen. For the features compiled in Table 1, for example, it
suffices to have three levels, including the piece (root node),
bar, beat levels. In terms of Dynamic Music Objects, each
piece loaded into our player is represented as a sequence of
bars, which are in turn sequences of beats. Such a struc-
ture can directly be passed to the player, which then simply
plays the piece, seemingly in its original form, unnoticeably
concatenated, beat by beat.

Given multiple such representations, we can build a new
structure on top of them, which may reuse and recombine
their elements in arbitrary ways. This allows us to build a
DJ mix by defining a new root node of type sequence, rep-
resenting the whole mix, to which we then gradually add
the parts of the pieces we intend to play. These parts can
again be of various types and may vary depending on the
type of transition we decide to add. Figure 2 shows a simpli-
fied representation of a mix containing parts of two pieces.
Depending on which root object we pass to the player, we
can get it to either play the individual original songs, or the
created mix, or all at the same time.

4.2 Transition Types and Constraints
Transitions can be modeled in a similar way, by concate-

nating and recombining parts of the current and cued song.
In the current implementation, whenever a transition is de-
cided on, the rest of the current song is removed and a tran-
sition part is added, followed by the rest of the cued song.
This process is repeated for every new cued song. Most
transitions have parameters, which define certain aspects of
their nature, e.g. offset in the cued song, or duration of the
transition.

Figure 2 also contains a simple transition part where the
two pieces are playing at once. In this case, the transition
is modelled using a few conjunction objects, which unite
the two pieces at the bar level. Without any audio param-

eter automation, this transition sounds rather crude. We
can introduce such automation by adding constraints to the
structure, which will be triggered at given points.

Depending on its type, the transition part is modeled
differently. The simplest case is the slam, which basically
means no transition, where the current bar of the current
song is directly followed by the first relevant bar of the cued
song, depending on the offset. For the echo freeze, the echo
parameter of the last beat or bar of the current song is set
to 1, a silent part of varying duration is inserted, followed
by the new song.

While these transitions simply consist in adding bars to
the mix sequence, the remaining transitions make use of
additional object types and constraints. For the crossfade,
we can simply add a conjunction of two sequences of bars of
comparable duration from each of the songs, complemented
by a constraint which ties the value of a ramp to amplitudes
of the bars as follows:

Amplitude(b1i ) = r, and Amplitude(b2j ) = 1− r

where r ∈ [0, 1] is the value of the ramp and b1i and b2j are
the bars of the current and cued song. The beat-matched
crossfade, in turn, consists in a sequence of pairs of bars
(b1i , b

2
i ) with the additional three constraints for tempo in-

terpolation:

t = (1− r) ∗ t1 + r ∗ t2

and beat-maching:

T imestretchRatio(b) = t/60 ∗DurationFeature(b)

DurationRatio(b) = 1/T imestretchRatio(b)

where r is the ramp value, t1, t2 the tempos of the current
and cued tracks, and b all beat objects involved in the tran-
sition. The power down can be generated with an analogous
ramp on playback rate, but without any overlapping of the
tracks’ bars.

5. WEB APP IMPLEMENTATION
As a proof of concept, we implemented a simple browser-

based prototype with the purpose of collecting some initial
data in order to evaluate the starting point and initial de-
cision tree, as well as to train the system. The prototype
consists of a main Angular 6 web app5 that communicates
with a Node API which collects and serves all the data in a
MongoDB instance. The automatic DJ functionality is im-
plemented as a separate node module written in TypeScript,
which can be embedded into any web application.6

The interface to the node module is very simple. It in-
cludes a class AutoDj with three public functions: isReady()
which returns a Promise that resolves once the module is ini-
tialized, getBeatObservable() which returns an RxJS Ob-
servable which emits an incremented number whenever a
new beat is being played (can for example be used for anima-
tions), and transitionToSong(audioUri: string) which
transitions to the song at the uri passed as an argument.
Anything else is done internally and automatically, including
loading the audio, extracting features, calculating higher-
level descriptors, deciding on a transition, gradually adding
to the mix structure, and playing it back. The constructor

5https://dynamic-music.github.io/fast-dj
6https://www.npmjs.com/package/auto-dj

https://dynamic-music.github.io/fast-dj
https://www.npmjs.com/package/auto-dj


web app

auto-dj module

schedulo

dymo-player

dymo-core

UI component

piper-js extractor

analyzer decision tree

mix generator

APIlearning unit

auto-dj

API serviceml-cart

direction of processing in module

Figure 3: The current structure of the prototype.

of AutoDj currently takes a few optional arguments, includ-
ing a custom decision tree (specified as a JSON structure),
a decision mode such as Tree, Random, or Default, a default
transition type, and a custom feature service which may
provide pre-extracted features for speeding up the process.

The internal structure of the module, shown in Figure 3
consists of a feature extractor (the default feature service),
which extracts features in the browser for each given track
using piper-js (see below), an analysis unit which calculates
and buffers the high-level descriptors, a decision unit which
can contain various decision processes, and a mix genera-
tor, which contains templates for all the transition types,
adds hierarchical song structures to the dymo-core triple
store, and creates the mix object as described above, which
is then navigated by the dymo-player,7 a playback module
optimized with Web Workers and based on our dynamic
scheduling module schedulo built around Tone.js.8 The
main AutoDj class connects and communicates with all other
units.

Everything else is done in the web app, including aggregat-
ing the user data, communicating with the API, and learning
the decision trees. The UI of the web app is currently kept as
minimal as possible, as can be seen in Figure 4. It guides the
user through a cycle of successive drag-and-drop, analysis,
transitioning, and rating stages. A new track is currently
cued as soon as possible, while sticking to the bar structure,
which accelerates the experimental data collection process.
For other kinds of studies and public use, the interface will
be made more flexible later on (see future work). Every new
rating is sent to the API which forwards them to a database,
which can be then be queried for data evaluation and the
learning stage.

5.1 Piper and In-Browser Music Analysis
Recent advances in web platform standards such as

SharedArrayBuffer,9 Atomics,10 and WebAssembly [5], al-
low for sophisticated signal processing techniques to be real-
istic in interactive web applications. The use of WebAssem-
bly and related toolchains have recently been used to bring
existing audio effects [9] and feature extraction methods [13]
to browser applications. We leverage these technologies to
bring in well-known methods for beat detection, chroma etc,
but also to do additional audio processing of audio in a non-

7https://github.com/dynamic-music/dymo-player
8https://tonejs.github.io
9https://hacks.mozilla.org/2017/06/
a-cartoon-intro-to-arraybuffers-and-sharedarraybuffers/

10https://hacks.mozilla.org/2017/06/
avoiding-race-conditions-in-sharedarraybuffers-with-atomics/

Figure 4: The minimal user interface after a transi-
tion has been rated.

blocking fashion for functionality not provided by the Web
Audio API.

In connection with feature extraction, an interesting ad-
vantage of using decision trees is that, depending on their
structure, they can significantly optimise the feature extrac-
tion process, since not for every path all features need to be
extracted. For instance, for the tree in Figure 1, if the cur-
rent track has already been determined to be irregular, the
only additional feature needed for the decision is the key of
both tracks, after which the transition can be started imme-
diately and additional feature extraction can be scheduled
while the new track is already playing.

6. A PRELIMINARY EXPERIMENT
To assess the current state of the system we conducted a

brief first experiment where we let four participants use the
app for 15 minutes each, with the same set of 200 highly var-
ied anonymised songs.11 The purpose of the experiment was
to compare the outcomes of the decision process with ran-
domly generated transitions. The app was set up to choose
with a 50% likelihood between the suggestion by the pre-
set decision tree, and a transition selected at random. Data
about a total of 81 transitions were collected during the ex-
periments, where transitions based on the tree were rated
higher with a p-value of 0.080346 in an independent t-test.
Figure 5 shows a plot of the distributions for both randomly
and decision-tree generated transitions. The high variation
in both the ratings of the informed and random transitions
may result from the fact that a random transition can have
a surprising or entertaining effect, whereas informed transi-
tions may not work for a given pair of songs, due to the vari-
ation in reliability of the high-level descriptors. The users
were satisfied with the simplicity of the app and enjoyed
hearing what it decided to do, and some stated that they
would like to try out the app with their own music collec-
tions.

7. CONCLUSION AND FUTURE WORK
Although the app introduced in this paper started out as

a demonstrator for a combination of several technologies,

11created by sampling the Moodplay dataset to obtain songs
as equally distributed as possible on the two-dimensional
arousal-valence plane [1].

https://github.com/dynamic-music/dymo-player
https://tonejs.github.io
https://hacks.mozilla.org/2017/06/a-cartoon-intro-to-arraybuffers-and-sharedarraybuffers/
https://hacks.mozilla.org/2017/06/a-cartoon-intro-to-arraybuffers-and-sharedarraybuffers/
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/


Figure 5: Histograms and Gaussian kernel density
estimates for the ratings of tree-informed and ran-
dom decisions collected during the brief study.

including the piper framework, dynamic music objects, and
semantic web technologies, there are various further direc-
tions that the work may lead us. First and foremost, the
opportunity of releasing the app online and letting users use
the app with their own music collections, will enable us to
collect a larger amount of transition ratings along with the
high-level features for each track pair.

With these data we will be able to experiment with dif-
ferent learning methods and learning goals. For example,
in addition to learning the transition types based on fea-
tures and ratings, future versions will also learn transition
parameters, which include duration, effect level, or offset, as
described above.

Then, more transition techniques can easily be incorpo-
rated, such as beat masher, loop roll, chopping, juggling,
teasing, reverse cueing, or looping, and give users more con-
trol over which set of transitions the app will selected from.
At some point, users could also define their own transition
types via a dedicated interface and subsequently share them
with other users. Due to the used internal representation,
the entire mix could also easily be saved and shared with
others.

The interface could also be modified to accept lists of files
to be cued, which would then play autonomously for a while,
which would also benefit from an implementation of a cue
point detection logic, as it exists in other applications. By
giving user the choice to use their own music and decide
on a succession, the transition ratings could also be used
for studying playlisting, i.e. choosing the best suited track
among a few options, as it was done in [10], however, with
a focus on a potential ease of transition rather than a mere
sequence.

8. ACKNOWLEDGMENTS
This paper is supported by EPSRC Grant EP/ L019981/1,

Fusing Audio and Semantic Technologies for Intelligent Mu-
sic Production and Consumption. Mark B. Sandler acknowl-
edges the support of the Royal Society as a recipient of a
Wolfson Research Merit Award.

9. REFERENCES
[1] M. Barthet, G. Fazekas, A. Allik, F. Thalmann, and

M. B Sandler. From interactive to adaptive
mood-based music listening experiences in social or
personal contexts. Journal of the Audio Engineering
Society, 64(9):673–682, 2016.

[2] R. M. Bittner, M. Gu, G. Hernandez, E. J. Humphrey,
T. Jehan, H. McCurry, and N. Montecchio. Automatic
playlist sequencing and transitions. In Proceedings of
the 18th International Society for Music Information
Retrieval Conference, ISMIR 2017, Suzhou, China,
October 23-27, 2017, pages 442–448, 2017.

[3] G. Bonnin and D. Jannach. Automated generation of
music playlists: Survey and experiments. ACM
Computing Surveys (CSUR), 47(2):26, 2015.

[4] D. Cliff. Hang the dj: Automatic sequencing and
seamless mixing of dance-music tracks. Hp
Laboratories Technical Report Hpl, 104, 2000.

[5] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer,
M. Holman, D. Gohman, L. Wagner, A. Zakai, and
J. Bastien. Bringing the web up to speed with
webassembly. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 185–200. ACM,
2017.

[6] T. Hirai, H. Doi, and S. Morishima. Musicmixer:
computer-aided dj system based on an automatic song
mixing. In Proceedings of the 12th International
Conference on Advances in Computer Entertainment
Technology, page 41. ACM, 2015.

[7] H. Ishizaki, K. Hoashi, and Y. Takishima.
Full-automatic dj mixing system with optimal tempo
adjustment based on measurement function of user
discomfort. In ISMIR, pages 135–140, 2009.

[8] T. Jehan. Creating music by listening. PhD thesis,
Massachusetts Institute of Technology, 2005.

[9] S. Letz, Y. Orlarey, and D. Fober. Compiling faust
audio dsp code to webassembly. In Proceedings of 3rd
Web Audio Conference, London, 2017.

[10] E. Liebman, M. Saar-Tsechansky, and P. Stone.
Dj-mc: A reinforcement-learning agent for music
playlist recommendation. In Proceedings of the
International Conference on Autonomous Agents and
Multiagent Systems, pages 591–599. IFAAMAS, 2015.

[11] H.-Y. Lin, Y.-T. Lin, M.-C. Tien, and J.-L. Wu. Music
paste: Concatenating music clips based on chroma
and rhythm features. In ISMIR, pages 213–218.
Citeseer, 2009.

[12] F. Thalmann, A. Perez Carillo, G. Fazekas, G. A.
Wiggins, and M. Sandler. The mobile audio ontology:
Experiencing dynamic music objects on mobile
devices. In Tenth IEEE International Conference on
Semantic Computing, Laguna Hills, CA, 2016.

[13] L. Thompson, C. Cannam, and M. Sandler. Piper:
Audio feature extraction in browser and mobile
applications. In Proceedings of 3rd Web Audio
Conference, London, 2017.

[14] L. Vande Veire. From raw audio to a seamless mix: an
artificial intelligence approach to creating an
automated dj system. Master’s thesis, Ghent
University, 2017.


	Introduction
	Related Work
	DJing as a Decision Process
	Modeling a Basic Decision Tree
	Descriptors Inferred from Audio Features
	Learning a Custom Transition Preference

	Representing the Music, Mixes and Transitions
	Mixes as Multihierarchical Structures
	Transition Types and Constraints

	Web App Implementation
	Piper and In-Browser Music Analysis

	A Preliminary Experiment
	Conclusion and Future Work
	Acknowledgments
	References

