
A Javascript Library for Flexible Visualization of Audio
Descriptors

Gerard Roma
CeReNeM

University of Huddersfield
g.roma@hud.ac.uk

Anna Xambó
Centre for Digital Music

Queen Mary University of London
a.xambo@qmul.ac.uk

Owen Green
CeReNeM

University of Huddersfield
o.green@hud.ac.uk

Pierre Alexandre Tremblay
CeReNeM

University of Huddersfield
p.a.tremblay@hud.ac.uk

ABSTRACT
Research in audio analysis has provided a large number of
ways to describe audio recordings, which can be used for
enhancing their visual representation in web applications.
In this paper we present fav.js, a Javascript library for
flexible visualization of audio descriptors. We explain the
proposed design and demonstrate its potential for web audio
applications through several visualization examples.

1. INTRODUCTION
Decades of research on automatic speech recognition,

environmental sound recognition, and particularly music
information retrieval (MIR) have contributed to establish
the notion of audio descriptors [13]. Audio descriptors can
be generally seen as metadata related to a given audio
recording. While descriptors can be obtained in many
different ways, a large effort has been devoted to the
automatic extraction of descriptors using signal processing
techniques. Such descriptors (often known as acoustic
features) are typically inspired, albeit sometimes loosely,
by current understanding of human perception of sound,
or by established concepts in music theory. In this sense,
it is common to distinguish between low-level, mid-level
and high-level descriptors, depending on how close they
are to common language. Many toolboxes are available for
automatic extraction [11].

While descriptors produced by automatic analysis have
been extensively used in machine learning research, their
use for visualization of sound in interactive applications is
a promising direction, as evidenced by early work [6]. This
direction has unfortunately received relatively little attention.
Among other issues, some descriptors may be difficult to
understand, or may need further processing or scaling. Some
of them may not be relevant in the absence of musical sound
or in noisy conditions.

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2018, September 19–21, 2018, Berlin, Germany.

c© 2018 Copyright held by the owner/author(s).

In this paper, we propose a flexible framework for
visualization of audio descriptors in web applications. The
framework is implemented in a Javascript library that
allows processing and combining audio descriptors and
drawing them in different styles. Our focus is not real-
time visualization but displaying time series of descriptors
obtained from existing recordings. While we are interested
in the representation of sound collections, we do not focus on
layout algorithms for positioning multiple sounds. Our hope
is to allow web developers and researchers to experiment with
currently available methods for obtaining sound descriptors
(both client- and server-side), and use them for visualization
in novel web audio prototypes. Potential application areas
include audio content creation and distribution, as well as
education.

The rest of the paper is organized as follows. In the next
section we review existing research related with web-based
audio visualization and visualization of audio descriptors
in general. We then describe the design of the framework.
Finally, we show some examples of visualization with fav.js,
and reflect on future work.

2. RELATED WORK
Method chaining is a popular technique for designing

concise object oriented APIs. This pattern can be used to
build embedded Domain Specific Laguages (DSL) [8]. This
design was popularized in the domain of web-based data
visualization by the D3 library [3] and has been followed
by many other libraries. A notable example related to our
work is the DataToMusic API [16]. Among other things,
this library implements several transformations of time series
with a focus on sonification.

Visualization of audio and other time series data in web
applications has been implemented in the WavesJS library.1

An early version [15] was based on D3, and thus followed
the method chaining approach. In [10], the data model was
extended to integrate audio playback and interaction. The
general library includes many useful components for web
audio development, whilst waves-ui and waves-blocks expose
the functionality for interactive visualizations. The semantics
of these components mostly focus on configuration of layers
including interaction. Like in D3, WavesJS visualizations

1https://github.com/wavesjs

https://github.com/wavesjs

leverage Scalable Vector Graphics (SVG) and the Document
Object Model (DOM), which allow for complex application-
oriented data models and abstractions. Our approach is
different in that we focus on the specific task of rendering time
series, which allows us to use the HTML canvas. At the same
time, our system aims to help visualizing arbitrary audio
descriptors, and thus offers a variety of drawing functions. As
an example, two-dimensional features such as spectrograms
can be rendered as bitmap images in the canvas.

Outside the web platform, the visualization of audio
descriptors has been a common topic of research within
the area of MIR, as discussed in [12], where a range of
techniques for feature extraction (from either symbolic or
audio representations) is presented, and common issues
(e.g. forms, formats, dimensions of music) are discussed.
Analyzing audio recordings has become an important task
in musicology, where automatic audio analysis has helped to
gain a better aural understanding [5].

One of the best known desktop applications for visualizing
audio descriptors is Sonic Visualiser [4]. This program
allows configuring several panes and layers with waveform
and spectrogram displays. Many audio descriptors can
be displayed in different layers thanks to vamp plugins.2

EAnalysis [7] is a similar application that provides several
pre-configured templates for laying out the visualization.
Descriptors can also be obtained using vamp plugins. Both
programs enable the use of audio descriptors in specific
applications such as musicological analysis. By providing
an open-ended Javascript library, as opposed to a user-level
application, we hope to enable their use in new applications
related to audio and music.

Computing the descriptors themselves is, however, beyond
the scope of our library. Our goal is to leverage existing
and future efforts for this task. At the time of writing,
two libraries have been presented for client-based feature
extraction in Javascript: JS-Xtract [9] and Meyda [14]. C++
libraries such as Essentia [2] can be compiled to Javascript
via Emscripten. We used JS-Xtract in our examples. Given
the computational cost, another possibility is to compute
the descriptors on the server. For example, the Freesound
API3, provides access to descriptors computed for any sound
in the Freesound database. While the default setting returns
statistics of the descriptor time series, obtaining the full
series is also possible.

3. DESIGN
The design of the library stems from our research on

manipulating large collections of audio for music creation.
In this context, we hope that improving on existing tools for
interactive audio analysis can provide new opportunities for
creative segmentation and manipulation of sounds. At the
same time, visualization of audio descriptors has potential for
applications to browsing audio in a broader sense. We hope
to facilitate making available results from signal processing
research to musicians, creative coders and web developers
who may all have varying dispositions towards technology.
In this sense, our design priority is ease of use, as well as
easy integration with other tools. Thus, we focused on a
lightweight codebase with no dependencies.

2https://www.vamp-plugins.org
3https://freesound.org/docs/api

Table 1: Summary of functionality
Signal Display

Unary ops. Binary ops. Drawing functions

threshold slice
norm offset
log square
pow exp
sqrt abs
scale diff
delay smooth

schmitt sample
draw slide
reflect

add
subtract
multiply

over
and
or
xor

wave
line
fill

range
image

errorbar

The library implements an internal DSL through method
chaining. The main goal is to offer a concise way to
express a route from a Signal object to a Display object
(Figure 1). A Signal is basically a wrapper around one
or several Float32Array objects, along with a sample rate
and a type identifier. The type identifier distinguishes
between binary, integer or real signals, but for simplicity
these are always encoded as floats. Each Float32Array
is assumed to vary in time according to the sample rate,
and two-dimensional signals are represented by an Array of
Float32Array objects (e.g. frequency channels). Operators
modify each element in the signal, as is common in
array languages and scientific computing environments. A
summary of currently implemented functionality can be seen
in Table 1. While the system could be used for visualization of
other kinds of time series, the choice of operators and drawing
functions is motivated by our focus on audio descriptors.

We define a number of unary operators to allow
transformations of a signal, such as scaling, smoothing,
thresholding, slicing or applying simple mathematical
operations. A special unary operator is “sample”, which
upsamples or downsamples the Signal. This is obviously
an important part in the process of visualization, as the
desired width of the display will only rarely coincide with
the length of the signal. The resampling process does not
follow common audio resampling techniques, as the goal
is to efficiently produce a visual representation. In order
to accommodate non-integer ratios, the descriptor is split
into subsequences of potentially different sizes. Then several
statistics (e.g. mean, median, standard deviation) can be
computed for each sequence. The same statistics are available
for smoothing without resampling. For upsampling, the mean
statistic is used, so the signal is linarly interpolated.

Binary operators allow combining two Signals by sample-
wise arithmetic operations, including boolean arithmetic.
This may be useful when one descriptor is not useful in parts
of the sequence. For instance, a measure of pitch confidence,
or an amplitude measure, can be used to select when a
pitch descriptor is displayed. Descriptors from different
channels of a recording can be combined to visualize the
spatial image. Binary operators are mostly thought for
combining descriptors of the same sound, so two Signals of
the same length are required.

Finally, a Display is a container for several Layer objects.
For an efficient notation, Layers can be accessed using array
operators. A Display owns a DOM container element, and
attaches an HTML canvas for each Layer. All Layers in a

https://www.vamp-plugins.org
https://freesound.org/docs/api

Feature
extraction

Signal OP1 OP2 ... Display

Figure 1: Visualization process

Display share the same position and dimensions, which are
specified in the constructor. If the width is not specified it
will be determined for all Layers the first time a Signal is
drawn. Otherwise, the sample operator is used internally
to scale the Signal to the desired width. Different Layer
types can be used for different kinds of drawings, some
restricted to particular dimensions. Available Layer types
are“wave”, for drawing waveforms; “line”, “errorbar”and“fill”,
for unipolar time series; and “image”, for two-dimensional
signals such as spectrograms. For one-dimensional signals,
a second signal can be provided to control the color. In
this case, as well as with two-dimensional signals, the color
mapping can be controlled using hue, saturation and lightness
(HSL), which is available for the HTML5 canvas in all major
browsers. Each of the three parameters allows for intuitive
visual mappings, however for simplicity we focus on lightness,
allowing the user to specify the hue. Drawing is triggered
by an operator on the Signal, which potentially results
from several operations. Display objects offer minimal
interaction capabilities, allowing the developer to attach
a function to click and drag events. Unlike other frameworks
like WavesJS, the goal for fav.js is to focus on transformation
and visualization. This obviously does not preclude the
development of interactions such as zooming or scrolling.

4. EXAMPLES
In this section we show some examples of the utilization

of the library. All examples assume an “audio” array, that
has been obtained by decoding a buffer, and a “getSignal”
function that returns a Signal object with some descriptor.
Descriptors were computed using JS-Xtract, but as long as
Float32Array and a sample rate can be provided, they can
be obtained in many other ways. The sample rate for the
loaded audio is obtained from the AudioContext.

One example of descriptor-based visualization is provided
by the Freesound project [1], where the waveform is colored
by the spectral centroid. The idea can be traced back to
Timbregrams described in [6]. With the proposed framework,
any descriptor (or combination of descriptors) can be used
to color waveforms. Figure 2 shows an example using the
spectral centroid with a drum pattern. The descriptor is
mapped to the hue, which has a range of 360 degrees. As a
result, each drum instrument gets a different color. Another
combination is shown in Figure 3. Here the root mean square
(RMS) amplitude descriptor is used to control the lightness.
The information is a bit redundant with the waveform, so
the visual effect reinforces the decay of the notes.

Another common application is segmentation.
Thresholding the RMS signal yields a binary signal
that can be used to visualy identify sound objects. In Figure

1 let sc = getSignal (audio , " spec_centroid ");
2 let wave = new fav. Signal (audio , sampleRate);
3 let display = new fav. Display (" container ",
4 "wave", 800 , 200);
5 wave.draw(display ,
6 [sc. smooth (20)
7 . normalize ()
8 . scale (360) ,
9 70, 50

10]);

Figure 2: Waveform coloring with Spectral Centroid

1 let rms = getSignal (audio , "rms");
2 let wave = new fav. Signal (audio , sampleRate);
3 let display = new fav. Display (" container ",
4 "wave", 800 , 200);
5 wave.draw(display ,
6 [237 , 100 , rms. normalize ()
7 . reflect ()
8 . scale (70)
9 . offset (30)

10]);

Figure 3: Waveform luminance coloring using RMS

4, this technique is applied to color a grayscale spectrogram.
On the other hand, the ability to transform and combine
descriptors makes it possible to use the library interactively
to develop more complex forms of object selection in order
to obtain better accuracy. An example is shown in Figure
5. We show only part of the code for saving space, the full
example can be obtained with the library code. Here, the
slice operator is used to zoom into the signal in a second
display, and observe the effect of the different operations.
The original RMS is shown in the pale blue shade, and the
first order derivative in the dark blue line. The smoothed

1 let spgm = getSignal (audio , " spectrum ");
2 let rms = getSignal (audio , "rms");
3 let display = new fav. Display (" container ",
4 " image ", 800 , 200);
5 display . addLayer ("fill");
6 spgm.log ()
7 . normalize ()
8 .draw(display [0]);
9 rms. smooth (20)

10 . threshold (0.05)
11 .draw(display [1] ,"rgba (100 ,0 ,0 ,0.3)");

Figure 4: Spectrogram with basic RMS thresholding

derivative is thresholded then combined with the original
RMS and thresholded again. The resulting signal is able to
segment the decay of a snare drum sound.

Finally, Figure 6 shows an experimental example that uses
errorbar layers to illustrate a selection of related, yet eclectic,
sounds of bowed cardboard. Several descriptors (spectral
centroid, zero-crossing rate, spectral skew and RMS energy)
are used as a visual fingerprint for assessing the relatedness
of somewhat disparate sounds from the same corpus. It is
interesting to see that features which are strongly correlated
in one sound may not be in another.

5. CONCLUSIONS
The combination of existing signal processing techniques

for description of sound and music with the visualization
power of current web technologies creates a great opportunity
for interactive web audio applications. In this paper we have
proposed a framework to make this possible, implemented
in a lightweight Javascript library. We have shown some
examples of potential applications. We plan to continue this
work experimenting with other sources of audio descriptors.
Also, since the Javascript language is also available in the
Max/MSP environment for user interface graphics, we plan
to adapt our library to this environment. The library can be
obtained from https://github.com/flucoma/fav.js.

6. ACKNOWLEDGEMENT
This research was part of the Fluid Corpus Manipulation

project (FluCoMa), which has received funding from the
European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 725899).

7. REFERENCES
[1] V. Akkermans, F. Font Corbera, J. Funollet,

B. De Jong, G. Roma Trepat, S. Togias, and X. Serra.
Freesound 2: An improved platform for sharing audio
clips. In Proceedings of the 12th Conference of the
International Society for Music Information Retrieval
(ISMIR), 2011.

[2] D. Bogdanov, N. Wack, E. Gómez Gutiérrez, S. Gulati,
P. Herrera Boyer, O. Mayor, G. Roma Trepat,
J. Salamon, J. R. Zapata González, and X. Serra.
Essentia: An Audio Analysis Library for Music
Information Retrieval. In Proceedings of the 14th
Conference of the International Society for Music
Information Retrieval (ISMIR), 2013.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3

Data-Driven Documents. IEEE transactions on
visualization and computer graphics, 17(12):2301–2309,
2011.

[4] C. Cannam, C. Landone, and M. Sandler. Sonic
Visualiser: An Open Source Application for Viewing,
Analysing, and Annotating Music Audio Files. In
Proceedings of the 18th ACM international conference
on Multimedia, 2010.

[5] N. Cook. Methods for Analysing Recordings. In The
Cambridge Companion to Recorded Music, pages
221–245. Cambridge University Press, 2009.

[6] M. Cooper, J. Foote, E. Pampalk, and G. Tzanetakis.
Visualization in Audio-Based Music Information
Retrieval. Computer Music Journal, 30(2):42–62, 2006.

[7] P. Couprie. EAnalysis : Aide à l’Analyse de la Musique

Électroacoustique. In Actes des Journées
d’Informatique Musicale, 2012.

[8] M. Fowler. Domain-Specific languages. Addison-Wesley
Professional, 2010.

[9] N. Jillings, J. Bullock, and R. Stables. JS-Xtract: A
Realtime Audio Feature Extraction Library for the
Web. In Proceedings of the 17th Conference of the
International Society for Music Information Retrieval
(ISMIR), 2016.

[10] B. Matuszewski, N. Schnell, and S. Goldszmidt.
Interactive Audiovisual Rendering of Recorded Audio
and Related Data with the WavesJS Building Blocks.
In Proceedings of the 2nd Web Audio Conference
(WAC), 2016.

[11] D. Moffat, D. Ronan, J. D. Reiss, et al. An Evaluation
of Audio Feature Extraction Toolboxes. In Proceedings
of the 18th International Conference on Digital Audio
Effects, 2015.

[12] N. Orio. Music Retrieval: A Tutorial and Review.
Foundations and Trends R© in Information Retrieval,
1(1):1–90, 2006.

[13] G. Peeters. A large set of audio features for sound
description (similarity and classification) in the cuidado
project. Technical report, IRCAM, 2004.

[14] H. Rawlinson, N. Segal, and J. Fiala. Meyda: An
Audio Feature Extraction Library for the Web Audio
API. In Proceedings of the 1st Web Audio Conference
(WAC), 2015.

[15] V. Saiz, B. Matuszewski, and S. Goldszmidt. Audio
Oriented UI Components for the Web Platform. In
Proceedings of the 1st Web Audio Conference (WAC),
2015.

[16] T. Tsuchiya, J. Freeman, and L. W. Lerner.
Data-to-Music API: Real-time Data-Agnostic
Sonification with Musical Structure Models. In
Proceedings of The 21st International Conference on
Auditory Display (ICAD), 2015.

https://github.com/flucoma/fav.js

1 let part = wave. slice (0 ,0.5 ," seconds ")
2 part.draw(displayZoom ," black ")
3 let partRMS = rmsM. slice (0 ,0.5 ," seconds ")
4 partRMS
5 .draw(displayZoom ,"rgba (9, 123 , 255 , 0.4)", 1)
6 .diff (). normalize (). slide (1 ,10)
7 .draw(displayZoom , "rgba (0, 0, 255 , 0.7)" ,2)
8 . schmitt (0.6 ,0.3).or(partRMS . slide (1 ,10). threshold (thresh))
9 .draw(displayZoom , "rgba (0, 0, 0, 0.1)" ,3)

Figure 5: Custom RMS-based segmentation

1 let zcr = getSignal (audio ,"zcr");
2 let rms = getSignal (audio ,"rms");
3 let centroid = getSignal (audio ," spectral_centroid ");
4 let skew = getSignal (audio ," spectral_skewness ");
5 let wave = new fav. Signal (audio , sampleRate);
6 let display = new fav. Display (container ," errorbar ", 300 , 225);
7 for(i = 0; i < 3; i++) display . addLayer (" errorbar ");
8 zcr.draw(display [0] ,"rgba (255 ,9 ,123 ,0.4)");
9 rms.draw(display [1] ,"rgba (123 ,9 ,255 ,0.4)");

10 centroid .draw(display [2] , "rgba (255 ,140 ,0 ,0.4)");
11 skew.draw(display [3] , "rgba (0 ,255 ,255 ,0.3)");

Figure 6: Multiple errorbar patterns

	Introduction
	Related work
	Design
	Examples
	Conclusions
	Acknowledgement
	References

